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Abstract 

Precedence constraints are broadly used in mathematical models and algorithms for mine planning to 
model, for example, slope angles in open pit operations or connectivity in underground mines. 
Unfortunately, these constraints do not capture relevant geometrical aspects for the design of the mine like 
minimum bottom space of pits or smoothness of the economic envelope in block caves. 
In this work, we present different approaches that utilize precedence constraints generating economic 
envelops that are more suitable for design purposes. The numerical experiences show that the proposed 
techniques produce high value envelops with better geometrical properties and that the methods proposed 
can be computed efficiently. 

INTRODUCTION 

Mine planning and design is supported by optimization methods and models that assist the planners to 
make the best decisions. However, as any approach based on mathematical models, these methods do not 
consider all the geometrical constraints and therefore many researchers have investigated ways to extend 
current models and algorithms so that the result from the optimization process is closer to a final design. 
 
In open pit mining, the canonical approach is to use the ultimate pit problem (Lerchs & Grossmann, 1965). 
This model takes as input a set of blocks 𝐵 with economic values 𝑣௜ ∈ ℝ, 𝑖 ∈ 𝐵 and a set of precedence arcs 
𝑃 ⊂ 𝐵 × 𝐵 such that (𝑖, 𝑗) ∈ 𝑃 means that 𝑗 is a predecessor of 𝑖 and must be extracted before 𝑗 to ensure 
the stability of the pit walls. Therefore, the ultimate pit problem does not incorporate aspects like the 
minimum bottom pit space that is necessary for the operation of large loading equipment or a volume (as a 
set of blocks) that can be easily transformed into an operational design. Indeed, it has been reported that the 
ultimate pit may provide a poor guide for design when compared to the output of models that include these 
geometrical constraints (Morales et al., 2022). 
 
In block and panel caving, determining the economic envelope of the mine requires computing the best 
location of the production level (bottom of the mine) plus the set of mineral columns that constitute the 
envelope, namely the footprint. Contrarily to the case of the ultimate pit, the de facto approach to determine 
this economic envelope is purely algorithmic. The user may predefine a certain region to limit the columns 
to be selected and then, for each possible production level, the algorithm determines the set of columns 
with positive value and constructs the envelope by maximizing the economic value of each column 
independently (Diering et al., 2010). As a result, the envelope may contain columns that are next to each 
other but have very different heights, and the shape of the footprint needs to be adapted to be realistic. 
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In this work, we propose to address some problems related to the geometry of economic envelopes in open 
pit mining and block and panel caving mining. Our aim is to present efficient methods, i.e., so that the 
computational time is not an issue. Specifically, 

- For open pit, we address the potential issue of connectivity, i.e., ensuring that there are not isolated 
blocks in the pit. For this, we propose to use the exact same model that is currently used for open 
pit, but to extend the set 𝑃 with additional precedences; thus, current efficient algorithms can be 
used without the need to investigate new algorithmic venues. 

- For block and panel caving, we develop a methodology that, for a given elevation, can calculate an 
optimal economic envelope but such that it is connected and has smooth borders and column 
heights, i.e., we eliminate the need of pre and post preprocessing of the solutions thus ensuring the 
optimality of the envelope. To do this, we model the envelope as an inverted open pit and add 
different types of precedences to ensure the properties mentioned before. Therefore, the approach 
not only ensures the optimality of the solution, but it is very efficient as fast algorithms like 
pseudoflow (Hochbaum, 2008; Hochbaum & Chen, 2000) can be used for the computations. 

- Finally, also for open pit, we address the problem of minimum bottom space. In this case, we use a 
simple extension of the ultimate pit problem in which we consider a second set of precedences that 
can be violated at cost in the objective function and use this to penalize narrow pit bottoms. 

We test the three methods mentioned before and show that they can be applied efficiently to obtain more 
practicable economic envelopes. 

RELATED WORK 

Open pit design optimization 

As mentioned before, the ultimate pit considers precedence constraints to model global slope angles only;   
however, the design of the pit walls is a much more complex task which must consider several design 
parameters (Hustrulid et al., 2013; Read & Stacey, 2009). 
 
In their seminal work, (Lerchs & Grossmann, 1965) considered a fixed set of slope predecessors for the 
blocks thus, Khalokakaie et al. (2000) extended their method to manage multiple slope definitions across 
the mine by using one angle per cardinal direction interpolating linearly in between. In turn, this approach 
was later extended to consider better interpolations (Gilani & Sattarvand, 2015; Shishvan & Benndorf, 
2016). 
 
In terms of constraints related to the operational space needed by large machinery, several authors have 
worked on different models, notoriously mathematical programming and specialized algorithms, to address 
the problem of computing one or several nested pits that comply with geometric constraints. (Bai et al., 
2018) uses mathematical programming combined with the application of some simple algorithms to 
improve the geometry. Tabesh et al., 2014 also use mathematical programming, in their case to define 
“mining polygons”. The resulting formulation is difficult to solve thus they implement a greedy heuristic 
and postprocessing to improve the geometry. Finally, Nancel-Penard & Morales, 2021 present a 
mathematical model that finds pit with several properties (connectivity, minimum space, no isthmus) 
without the need of post processing of the solution. The resulting model is difficult to solve so they apply a 
preprocessing technique to speed up the computation times.  
 

Block and panel caving footprint optimization 

In the case of block and panel caving mines, the resulting footprint must comply with several geotechnical 
and geometrical considerations. First, the footprint must exclude portions that do not comply with a 
minimum critical hydraulic radius that facilitates a steady caving process. This radius is commonly 
estimated through Laubscher’s stability graph and depends on the adjusted rock mass rating of the orebody 
(D. Laubscher, 1994; D. H. Laubscher, 1993). Second, to help the even draw of material during production, 
the height of draw for close columns must be regular (Diering, 2004; Diering et al., 2010). The uniform 
draw is desirable to promote the interaction of drawpoints and minimize dilution (Castro & Paredes, 2014), 
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and to prevent operational issues like stress and hang-ups (Brown, 2007; Nezhadshahmohammad et al., 
2019). 
 
Despite all the geometrical aspects that should be considered for determining the caving footprint, 
obtaining a favourable caving shape and limit the effects of the abutment stress in the production level, the 
current practice in block caving optimization is to manually smooth the footprint outline. This process is 
usually made by the mining engineer and has received very little attention in the literature. Some examples 
of this procedure can be found in Gantumur et al., 2016 and Noriega et al., 2018. 
 
As mentioned before, in this work we use precedence constraints to model the connectivity and smoothness 
of the caving envelope. Indeed, (Elkington et al., 2012) first proposed to use slope constraints to model the 
regularity of height of draws and (Julio et al., 2015; Vargas et al., 2014) used the same idea, in the context 
of transitioning from open pit to underground mining and determining caving envelopes under geological 
uncertainty. However, in this work we use more elaborate precedence constraints to also control minimum 
height of draw, connectivity of the caving and smoothness of the plant limits. 
 

BLOCK AND PANEL CAVING SMOOTH ECONOMIC ENVELOPE 

This section presents a methodology to obtain an optimized economic envelope with smooth geometry for 
block or panel caving. The geometric body that must generate this set of columns has to consider several 
geomechanical criteria to achieve an operationally valid design. The first criterion is to comply with a 
critical hydraulic radius that facilitates constant undercutting. Also, the footprint contour must have a 
smoothed shape to avoid the concentration of high induced stresses. Mainly, these stresses can generate 
loss of reserves, punctual collapse or increase in the development cost. Another geometric criterion is the 
difference between the heights of adjacent columns. This difference heights should not be pronounced. This 
property facilitates uniform draw which helps to avoid early dilution entry. These shape criteria promote a 
smoothed geometric body in a horizontal and vertical plane. The traditional approach to defining an 
envelope computes an envelope with maximum economic value that requires design post-processing to be 
operationally valid. This is why, the proposed methodology includes these shape constraints in the 
economic envelope optimization stage. For this purpose, the traditional ultimate pit solver is adapted by 
inverting the cone and adding a set of precedence arcs. 
 
Currently, the accepted method to find the elevation and economic envelope of block and panel caving 
mines evaluates each elevation separately and determines the best set of economic columns, thus reporting 
economic value, grades and tonnages for each level and leaving the decision of the level to the planner. 
This helps to fractionate the block model, bounded by the optimal floor and the maximum height of a 
mining column, 𝐻௠௔௫ . We propose to use the same general procedure but replace the computation of the 
economic envelope at each level by an inverted pit with additional precedence constraints to control the 
shape of the envelope. The advantage of doing this is a better control of the geometry and to take advantage 
of the fast algorithms that exist to compute pits.  
 
To model the shape of the pit, we define different precedence arcs 𝑖 → 𝑗, where 𝑖 and 𝑗 are blocks of the 
block model ℬ. The first set of precedences are the vertical arcs, present within a draw column. The arc 𝑖 →
𝑗 is generated if block 𝑗 is located immediately below block 𝑖, except if block 𝑖 is located at the base of the 
envelope (Fig 1. Left). Additionally, to respect the minimum draw height, 𝐻௠௜௡, that a draw column must 
possess, an arc 𝑖 → 𝑗 is incorporated into each column, where block 𝑖 is located at the base of the column 
and block 𝑗 is located at a vertical distance equivalent to the minimum draw height. The next set of 
precedences guarantees smoothness in the vertical and contains of diagonal arcs. The diagonal arcs allow 
the interaction between adjacent columns to control the height difference. If the height difference between 
columns must be 𝛿, then arc 𝑖 → 𝑗 is defined if block 𝑗 is in a contiguous column and at a vertical distance 
𝛿 from 𝑖 (Fig. 1, left). Finally, the third set of precedences contains horizontal arcs, which guarantee a 
smoothed shape for the footprint. For this, 𝑐, 𝑖 and 𝑗 are blocks belonging to ℬ, where 𝑐 is the center of a 
disk 𝐷(𝑐, 𝑅), where 𝑅 is the Euclidean distance between blocks 𝑐 and 𝑖, denoted as 𝑑(𝑐, 𝑖). Furthermore, 
block 𝑖 is the center of the disk 𝐷(𝑖, 𝑟), with 𝑟 constant. Then, arc 𝑖 → 𝑗 is defined only if 𝑑(𝑐, 𝑗) ≤ 𝑅 and 
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𝑑(𝑖, 𝑗) ≤ 𝑟. As shown in Figure 1 (right), all those blocks that lie within the area of intersection between 
the disks 𝐷(𝑐, 𝑅) and 𝐷(𝑖, 𝑟) will be precedence of block 𝑖. 
 

  
Figure 1. Left: Vertical precedences in green and blue, and diagonal precedences in orange. Right: Horizontal 
precedences of 𝒊 in yellow, with initial point in 𝒄 (black). 

It should be noted that 𝒄 is called initial point, and one or more can be arbitrarily defined. The shape 
parameters 𝜹 and 𝒓 are arbitrarily defined, influencing the smoothness of the economic envelope. For 
example, the smaller the 𝜹 and the larger the 𝒓, the smoother the envelope. In our case, a single initial point 
is defined in the higher-grade zone, while 𝜹 and 𝒓 are calibrated, such that the resulting envelope has 
acceptable contours. This calibration step, prior to obtaining an acceptable envelope, consists of a simple 
sensitivity analysis to observe the shape and economic value of the envelopes. 

An example of application is performed with the Delphos3 block model. The PCBC method is compared 
with the proposed method. First, using the PCBC method, an envelope is computed for each level of the 
block model, to find the level that delivers an envelope with the highest economic value. This envelope is 
named PCBC-Raw, because it has no design intervention (Fig. 2). Based on this envelope, an operational 
design is proposed by removing or adding draw columns. The resulting envelope is named PCBC-Manual 
(Fig. 2). Finally, an envelope is computed with the proposed methodology, named Smooth (Fig. 2). 

 

PCBC-Raw  PCBC-Manual Smooth 
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Figure. Shape comparison between PCBC-Raw, PCBC-Manual and Smooth. The top row shows an isometric 
view (colour scale represents the height of the columns), while the bottom row shows the respective plan view 
(colour scale represents the cumulative value of each column, with warm colours for high values). 

It can be seen in Figure that the shape of the Smooth envelope has a similar design to the proposed design 
of the PCBC-Manual envelope. A comparison of the economic values shows the good performance of the 
proposed methodology (Table 1). The Smooth envelope obtains a slightly higher economic value than the 
PCBC-Manual envelope and with good geometrical properties. 

Table 1. Value comparison between PCBC-Raw, PCBC-Manual and Smooth. 
  Economic Value 

(MMUSD) 
Total Tonnage 

(MTons) 
Waste Tonnage 

(MTons) 
Mineral 
(MTons) 

PCBC-Raw 2,737 128,575 28,302 100,273 
PCBC-Manual 2,392 99,347 17,957 81,390 
Smooth   2,402 89,676 15,112 74,564 

CONNECTED OPEN PIT 

This section addresses the generation of a pit that spans different ore bodies relatively close together (Fig. 
3, left) and in turn has a design closer to an operational one. The traditional ultimate pit solver tends to 
generate walls with steep convex sections at the intersection between cones (Fig. 3, right). These convex 
sections are geomechanically unstable, requiring smoothing at a later design step. To address this problem, 
the same approach applied in the previous section will be used. We propose to add a second set of 
precedence arcs to the traditional ultimate pit solver. 

  

Figure 3. Left: Plan view of block model with different ore bodies. Right: Plan view of standard ultimate pit. 

Next, we will explain the methodology and basic notation to define the new set of horizontal precedence 
arcs. Let 𝑐, 𝑖 and 𝑗 be blocks belonging to the blocks model ℬ, where 𝑐 is the center of the ellipse 
𝐸(𝑐, 𝑎, 𝑏). Block 𝑖 is the center of the disk 𝐷(𝑖, 𝑟) with 𝑟 constant. The semi-axis 𝑎 is the Euclidean 
distance between blocks 𝑐 and 𝑖 denoted as 𝑑(𝑐, 𝑖), while the semi-axis 𝑏 is constant. Point 𝐹ଵ is a focus of 
the ellipse, as is 𝐹ଶ, such that 𝑑(𝑐, 𝐹ଵ) = 𝑑(𝑐, 𝐹ଶ) = √𝑎ଶ − 𝑏ଶ. Finally, 𝑃 any point on the ellipse, only if 
𝑑(𝑃, 𝐹ଵ) + 𝑑(𝑃, 𝐹ଶ) = 2𝑎. Is define the arc 𝑖 → 𝑗 only if 𝑑(𝑗, 𝐹ଵ) + 𝑑(𝑗, 𝐹ଶ) ≤ 2𝑎 and 𝑑(𝑖, 𝑗) ≤ 𝑟. As 
shown in Figure 4, any block that lies within the area of intersection between the ellipse 𝐸(𝑐, 𝑎, 𝑏) and the 
disk 𝐷(𝑖, 𝑟) will be precedence of block 𝑖. 
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Figure 4. Horizontal precedences of 𝒊 in yellow, with initial point in 𝒄 (black). 

 
Also, as mentioned above, there may be a set of arbitrarily located initial points, 𝑐, which are arbitrarily 
located. Shape parameters 𝑟 and 𝑏 with high value will generate less convex sections in the wellbore 
contour. Our numerical experience is performed with the g6 block model, where several initial points were 
tested. It is decided to locate five initial points (Fig. 5, left), based on the traditional ultimate pit, UPIT, 
specifically on the ore bodies left inside this wellbore. While the shape parameters 𝑟 and 𝑏 are calibrated to 
obtain a well with acceptable shape. The results show that the proposed methodology generates a well 
(UPIT-Connected) with an economic value with a difference of less than 2% (Table 2) and a contour much 
closer to an operational design (Fig. 5, right). Figure 6 compares both ultimate pits, appreciating in more 
detail the effect of the new set of horizontal precedences on the convex sections of the slope. The optimized 
design obtained with our methodology is a better basis for defining a final operational design. 
 

  
Figure 5. Left: Plan view of block model with five red initial points. Right: Plan view of Connected pit with five 
red initial points. 

 
Table 2. Value comparison between UPIT and UPIT-Connected. 

 Economic Value 
(MMUSD) 

Total Tonnage 
(MTons) 

Waste Tonnage 
(MTons) 

Mineral 
(MTons) 

UPIT 8,079 482 359 123 
UPIT-Connected 7,942 491 368 123 
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Figure 6. Overlap between UPIT and UPIT-Connected (Green: UPIT, Orange: UPIT-Connected, and Red: UPIT 
+ UPIT-Connected). 

OPEN PIT WITH MINIMUM BOTTOM WIDTH   

In this section we focus on the problem of defining a set of nested pits with a minimum bottom width.  
Several works have proposed models to obtain pits with operational space, but they usually result in 
complex mixed-integer programs that are hard to solve. To address this challenge, we propose a different 
approach: an extension of the final pit problem to include penalties for not meeting the minimum mining 
width criteria. The idea behind these penalties is to include a different operational criterion. The minimum 
width is associated with the operational space required by the loading equipment of the mine. However, 
smaller widths can be mined if different, smaller equipment is used. The downside of this decision is that 
smaller equipment is, comparatively, more expensive to operate per ton of moved material. Therefore, a 
model could allow for smaller mining widths if the profit is enough to pay for the higher mining cost. 
 
To formalize the problem, let us call 𝐵 the block model and 𝑖 a particular block and 𝑣௜ the net value  
associated with the extraction of block 𝑖. 𝑃 represents the set of precedence constraints. If pair (𝑖, 𝑗) ∈ 𝑃, 
then block 𝑖 can be extracted only if block 𝑗 is extracted as well. Binary decision variable 𝑥௜ , 𝑖 ∈ 𝐵 controls 
the extraction of block 𝑖. We introduce a second set of predecessors 𝑄 ⊂ 𝐵 × 𝐵. If (𝑖, 𝑗) ∈ 𝑄 we say that 𝑗 
is a soft predecessor of 𝑖 because 𝑗 is not required to be extracted before 𝑖, i.e., the “precedence constraint” 
in this case can be violated but at a cost 𝑐(𝑖, 𝑗). 
 
The integer program that models our problem is shown next: 

(𝑈𝑃𝐼𝑇ା) 𝑚𝑎𝑥 ෍ 𝑝௜𝑥௜

௜∈஻

− ෍ 𝑐௜௝𝑦௜௝

(௜,௝)∈ொ

 

𝑥௜ ≤ 𝑥௝  ∀(𝑖, 𝑗) ∈ 𝑃

𝑥௜ − 𝑥௝ ≤ 𝑦௜௝ ∀(𝑖, 𝑗) ∈ 𝑄

𝑥௜ ∈ {0,1} 𝑖 ∈ 𝐵

 𝑦௜௝ ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝑄
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As the focus of this paper is the application, we do not provide a mathematical proof of this, however it can 
be shown that the binary constraints can be relaxed and replaced by 𝑥௜ , 𝑦௜௝ ∈ [0,1]. That is, the problem is 
indeed a continuous linear program which can be solved in polynomial time. 
 
An important aspect of the implementation is to define where we should apply the soft precedence 
constraints, or, equivalently, where the bottom of a pit is located. To find a pit’s bottom, we first solve the 
final pit problem without soft precedence arcs. Then, we identify the benches at the bottom of the pit. 
Finally, we apply the soft precedence arcs for a neighborhood of those benches and solve the resulting 
model. We explored different penalty cost and minimum widths for our case study. Fig. 7 shows the results 
of these alternatives for three revenue factors (0.6,0.8 and 1.0) and their comparison with the traditional 
nested pits approach for the Marvin dataset (53,271 blocks). 
 

 

 

 
Figure 7. Pits with penalized bottoms and comparison with traditional nested pits. Colors indicate the resulting 
pit for each revenue factor 

As seen in Fig. 7, our model successfully impose a minimum width at the bottom of the pits for each 
revenue factor. Note that, depending on the case, the pit with minimum bottom constraints might be larger 
or smaller than the traditional final pit. For instance, for RF=0.6, the pits with soft constraints tend to be 
smaller than the pits without them. On the contrary, for RF=0.8 and RF=1, the soft constraints generate a 
larger pit to accommodate for the minimum width requirement. It is also important to notice that, in some 
cases, the model chooses to not respect the optional minimum width constraints (see, for instance, RF=0.8, 
Min Width=120m, Cost=1.0 USD/t). For this case, it is more profitable to extract the bottom’s blocks with 
smaller equipment than either not to extract them or to generate a larger bottom. 
 
To further analyze the results, Table 3 shows a comparison between profit and tonnage of our model 
(UPIT+) and the traditional final pit (UPIT) for the case study presented previously. In terms of value, the 
inclusion of soft constraints decreases the profit of the resulting pit compared to the traditional final pit. 
However, the difference is small, ranging from 3% to 9% depending on the case. If we analyze the result of 
UPIT and apply the penalties for not fulfilling the minimum width requirement, the decrease in value is 
larger, ranging from 4% and 35% depending on the case. This result shows that our model is able to respect 
the minimum width constraints without sacrificing a large share of the original profit. At the same time, the 
comparison between tonnage also demonstrates that the application of UPIT+ could result in a larger or 
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smaller pit compared to UPIT. Finally, computation time is adequate for long-term planning. While our 
model is more complex than UPIT, its mathematical properties allow for low runtimes. 
 
Table 3. Numerical comparison between UPIT+ and UPIT 

   
 Profit (MMUSD)  Tonnage (MMt)   

 
Min.  

Width  
(m) 

 Cost  
(USD/t) 

RF 
 

 UPIT+ 
Penalized 

UPIT 
UPIT 

 Penalized 

 
 UPIT+ UPIT 

 UPIT+  
Runtime  

(s) 

90 1 0.6   637.50 669.01 572.1  348.52 376.19  16.87 

90 1 0.8   1902.46 1989.91 1849.16  541.38 494.87  26.09 

90 1 1   3432.57 3537.98 3382.75  622.11 564.28  24.19 

90 1.5 0.6   635.67 669.01 523.65  344.72 376.19  17.68 

90 1.5 0.8   1883.17 1989.91 1778.78  555.15 494.87  27.12 

90 1.5 1   3395.13 3532.82 3296.93  646.17 571.13  24.71 

120 1 0.6   628.28 669.01 432.31  342.04 376.19  17.36 

120 1 0.8   1818.45 1989.91 1634.76  446.7 494.87  32.16 

120 1 1   3322.25 3538.8 3138.73  662.85 562.33  28.32 

120 1.5 0.6   627.08 669.01 313.95  340.44 376.19  21.46 

120 1.5 0.8   1811.50 1989.91 1457.19  432.82 494.87  26.45 

120 1.5 1   3280.53 3538.8 2938.69  684.86 562.33  30.48 
 

CONCLUSIONS 

Conventional methods for optimizing the economic envelope of open pit and block and panel caving mines 
do not incorporate all the geometrical constraints necessary to generate an operational envelope. Therefore, 
significant parts of the process of mine design rely strongly on the criteria and skills of the engineers to find 
a good balance between the envelopes reported by optimization models and feasible geometries for design 
purposes. Because of this, it is not possible to ensure optimality or evaluate multiple options fast enough to 
ensure the robustness of the decisions. In terms of research, many authors have addressed these issues, 
however partially and most of the time by means of complex mathematical formulations that require to be 
solved by heuristics or that use complementary algorithms to treat the outputs of the optimization phases, 
i.e., cannot ensure optimality and tend to be difficult to implement and slow to be solved. 
 
In this paper, we apply a known model, namely the ultimate pit problem to address some geometrical issues 
of open pit and block and panel caving mines. The application of this well-known model ensures that even 
large instances can be solved very quickly by applying efficient algorithms. Moreover, we apply an 
extension of the ultimate pit problem in which some precedence constraints can be violated at a cost, to 
address the problem of minimum bottom space at open pit mines. 
 
The application of the methods shows that it is possible to improve the geometry of economic envelopes 
significantly and that this can be done efficiently: For block and panel caving mines, the method generates 
smooth envelopes (with regards to differences in heigh and borders) in short computational times. In open 
pit mining, the addition of “weak precedence” arcs allows improving the geometrical conditions at the 
bottom of the pit, and extra horizontal precedence arcs to improve the smoothness and geometry of the 
borders of the pit. The fact that the methods used for computation are efficient (polynomial algorithms) 
opens the door to continue to extend the models and to address the issue of robustness of the solutions. 
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