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APPLICATION OF LOCAL SEARCH TO
CREW SCHEDULING

Jorge Amaya, Héctor Ramirez and Paula Uribe

Abstract. This work introduce a model for the crew scheduling problem for train opera-
tions, based on a rotative schema, where weekly trips are fixed along the time. This gen-
erates a 0-1 medium/large size optimization problem. The special feature of this model is
an infinite horizon schedule, due to the rotative schema, where every crew takes the place
of the consecutive crew when a new week starts. The problem resolution is performed
through three steps: first, finding a feasible solution of infinite length, where schedules
repeat in a rotative way between crews; then, an adapted local search is used to improve
the initial solution, in order to equilibrate the weekly working hours among crews; finally,
drivers are assigned to the scheduled weeks, by solving a flow problem.

Keywords: crew scheduling, integer programming, heuristics.
AMS classification: 90C09, 90C10, 90C27.

§1. Introduction

Crew scheduling is one of the major phases in crew management in large transportation net-
works such as railway, bus and airline systems, where technical, legal and time constraints
must be taken into account when scheduling drivers and crews. A crew in our specific appli-
cation, typically consists of two drivers, to which a set of tasks (trips) are daily assigned.

Crew assignment (see, for example, [5] and [6]) is a classical optimal decision problem.
In general, this assignment problem can have a very high number of decision variables which
entails a high degree of complexity for resolution. Frequently, the standard branch and bound
strategies are not able to solve large instances, then many variants of well known algorithms
have been applied to tackle these hard problems. For a urban bus system, in [3], the authors
propose a column generation approach to solve the transit crew scheduling problem. For
the air crew rostering problem, in [7], they use a generalized set partitioning model and a
method using column generation, adapted to take advantage of the structure of the problem.
They claim that this method is capable of solving very large scale problems with thousands
of constraints and hundreds of subproblems. An hybrid column generation approach for the
urban transit crew problem is studied in [13]. The authors divide the problem in two stages:
crew scheduling and crew rostering, solving each separately, and combining mathematical
programming and constraint logic programming with column generation. The article cited
in [12] describes the development and implementation of an integer optimization model to
resolve disruptions to an operating schedule in the rail industry. Favorable results for both
the combined train/driver scheduling model and the real-time disruption recovery model are
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presented in that paper. Article [1] uses an iterative partitioning for large scale crew schedul-
ing instances; Lagrangean relaxation combined with subgradient optimization is applied in
[2]. Decomposition and relaxation strategies are used in [11], for the resolution of a mul-
ticommodity network flow problem, representing the railroad crew assignment. Heuristics
approaches, such as simulated annealing and genetic algorithms, are proposed in [4], [8] and
[9], both for airline and train crews. In [10], the authors apply high performance Integer Opti-
mization for the practical resolution of the crew scheduling problem. They use a Lagrangean
relaxation based heuristics and a sequential active set strategy.

The work presented here correspond to a specific application for a Chilean railway company.
For this case, the biggest interest is to distribute as balanced as possible the load between
crews and to maintain the week load within the legal bounds. The problem resolution must
also provide an output composed of a rotative weekly schedule, in which after m weeks, ev-
ery crew will have met the program of every week. The main advantage of this strategy is to
keep a balanced hours load for all crews, besides being an infinite horizon schedule, reusable
as many times as desired. The general resolution approach is given in three sequential steps.
Firstly, a feasible solution is obtained, which is equivalent to a schedule where every trip is
covered, but the working hours load is not necessarily balanced among weeks. this is made by
using the Branch and Bound algorithm. Secondly, a local search heuristic is used to improve
the initial feasible solution, by balancing the weekly crews load. Finally, crews are assigned
to the scheduled weeks, taking into account the initial conditions of crews, in terms of current
location, immediately past loads and rest hours.

§2. The conceptual model

The optimization mathematical model can be described thromgh @ set of constraints and an
objective function, based on the description presented below.

2.1. Constraints
e One trip, one crew. Each trip must be assigned to one and only one crew.

e Legal rest. For each 7-days window there must be at least 1 legal rest. A legal rest
corresponds to a fictitious trip of 33 hours, beginning at @ FM and ending at 6 AM of

the subsequent day.
e [nter-trips rest. Between a pair of trips a time window called infer-trips rest must be
imposed. The duration of that window is given by the labor regulations laws.

e Sunday rest. A Sunday rest corresponds to a fictitions trip of 24 hours, beginning at
0:00 hours of Sunday. There are rest regimes of 0. [ or 2 Sendays rests a month, and it
must be assigned according to the specified regime.

e Origin/Destination. The origin of a trip must be the destmation of the previous one.

e Consecutive trips. There are pairs of trips that conform a round trip. In these cases, it
is imposed that a trip must be followed by its pair.
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e Rotation. In a normal schedule, m weeks are programmed, in order to assign the work
load in a balanced way. Week after week, each crew takes the place of the next one,
thus after m weeks, every crew will have served the same trips sequence.

® Fixed rests. Sometimes, pre-established rests programs are used. The final system must
be able of operating either with these programs or allowing the rest days be fixed by
the mathematical model.

2.2. Objective Function

Assuming that all trips can be served by a crew, the most critical issue for this application is
to schedule as balanced as possible the work load among weeks (or crews).

§3. The mathematical model

Let us denote V3, ..., V;, the set of train trips in a week. We assume that these trips are reg-
ular, in the sense that the same scheduling is repeated every week. We include in the set of
trips, two sets of virtual trips: the overnight legal and the Sunday rest, that will be explained
at the end of this section. Let us denote by V the set of all trips (including the virtual trips).

Each trip in V is characterized by a vector of attributes or parameters considered here as
given input data for the model. These are: starting time (day, hour, minutes), travel duration,
initial station or origin and final station or destination. We also include the next trip, which
means that a given trip must be followed by another well specified trip, in the special case of
round trips. So, we assume that the following information is known:

e N, is the next trip associated to v;

e [, and F), denote the initial station and the final destination, respectively;

(hy,m.,) denotes the hour and the minutes of the trip v (then, 0 < h, < 24 and
0 < m, <60)

(Ahy, Am,) denotes the hour and minutes of duration for trip v; and

(hy,77) is the arrival time of v.

We consider legal and Sunday rests as virtual trips, denoted by vy, r and vgg, respectively.
An original and simplifying idea in our approach consists in imposing a rotation scheme
where a crew i takes the schedule of the crew i - 1 in the next working week. In this manner,
after m weeks (being m the number of crews), all crews take all schedules, which in particu-
lar implies that the number of hours done by all the crews are the same in the long term,

We define x;,, an integer 0-1 variable indicating if crew i € T = {1,..., m} is allocated to
tipv € Vatdayk € D ={1,...,7}, thatis:

1 if 7 is allocated to trip v at day &
Lipk = (1)

0 otherwise
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3.1. Conistraints

o One trip, one crew. Each real (not virtual) trip can have one and only one crew, so we
impose:
> zik=1 YWweV,keD )
iET

o Incompatibility between two trips. Let us define the compatibility index for a pair of
trips: if v, v’ are two trips in days k and &', respectively, then we define a parameter
Tk i OY: Nukok = 1 if (v, k) is compatible with (v, k'), and 7,55 = 0 if not.

Incompatibility index 7yr.rxs is calculated considering the time of arrival/departure
and the origin/destination of the trips. The incompatibility constraint is then expressed
by:

— For different days k&' > k:

TE T= 'U,’U’ € v: Tokv'k’ = 0: Tivk T Lot = 1 (3)

— For the same day &’ = k:

€T, v,V €V, 0V, Mooy =0 Zijgg + T < 1 )

The only exception to this time incompatibility are the virtual trips associated to the
rest days of the crews, This means that a rest trip is compatible with all the other real
trips.

o Overnight legal rest. The legal rest must be assigned before the 7t* working day, so

we impose:
min(7,k+5) k—1
Vo=uvpp, i€T, RE€ED:1L > Zuj+ D Taiyw <2 (5)
=k g=1

o Sunday rest. The Sunday rest regime indicated by the R attribute imposes the number
of free Sunday in a group of 4 consecutive weeks. The corresponding constraint is
written as:

+3

Y >R v=uvsp, eT (6)
g=i

o Crew rotation. In order to impose that crew ¢ takes the schedule of crew ¢ 4 1 the next
week and so on, we write, for
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i:l,...,mgl,V’iET, 'U,?)’GV, ’q.ur?,ull :O_'
Ziw? + Z(i+1)vr1 < 1 (7

and, to impose that crew m takes the schedule of crew 1, we write, for v,v' €
V} Nwrv'l = 0:
Tmar + T11 <1 (8)

e Consecutive trips. If the pair of trips (v, k) and (v’, k") are defined as consecutive
(served by the same crew), then we impose:

Tivk = Tiwy VIET, K€D )

3.2. Objective function

Since the idea is to achieve a balanced weekly amount of working hours for every crew, we
define the integer variables z* y 2~ through the inequality:

2 Y M=z VieT (10)
veV, keD

where A,, is the duration of trip v. So, we use the following objective (balanced hours):
min st — 2 (11)

subject to constraints (2)-(10).

§4. The drivers assignment problem

The previous model permits to find a feasible or optimal equilibrated trips diagram, but it
doesn’t include the identification of crews. For the crew assignment, we propose to consider
the previous model as an input, which provides a feasible solution but without identifying the
specific crew to be assigned to each weekly diagram.

Leti € 7 given crew and j € T be a weekly diagram given by the previous model. We
also denote w;; the weight of the crew i to be assigned to week j. This term can be propor-
tional to the difference between the number of hours cumulated by the crew 4 in the previous
week and the number of hours to be done at week j. We use the variable

1 if 7 is assigned to week j
Yij = { . . (12)

0 otherwise

This means that each crew is assigned to one and only only one week of the diagram, and
each week is assigned to one and only one crew. We also define a bipartite graph whose
vertices can be divided into two disjoint sets: the set of crews and the sets of weeks. The set
A of oriented arcs connecting crews to weeks is defined as:
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(i,7) € A <= 1 is compatible with j

Compaiibility here means that given a crew 1, it can be effectively assigned to a given week
J- This can be expressed by the following three conditions:

e Rest hours. Last service (trip) by crew ¢ must satisfy the minimum rest period with
respect to the first trip in the week.

e Feasible location of the crew. The actual location of the crew must be equal to the
initial location (origin) of the first trip in the scheduled week.

e Legal rest day. The last legal rest day of the crew must satisfy the legal rest condition
with respect to the scheduled week (on day-off in every 7-days interval).

The objective function of this problem is:
Z WilYij (13)
(4,5)eA

which have to be maximized.

Given that the number of weeks of the diagram and the number of available crews are equal,

then this problem can be interpreted as to find an optimal one-to-one assignment between

crews and weeks. The constraints are:

Y, wi=1 Vieg (14)
i/ (i,5)EA
and
3 w—1 Vet (15)
i/ (i.9)EA

Expressions (13), (14) and (15) define the optimal assignment of crews to weeks of the dia-
gram.

This is a medium size optimization flow problem whose solution is easy to obtain, in com-
parison with the computer time for the main scheduling problem given in Section 3.

§5. The adapted local search algorithm

In practice, the problem formulated above is hard to solve, specially due to the constraint (2),
which forces to assign every trip to a crew. This complexity can be decreased (in terms of
execution time) if the constraint (2) is relaxed as:

> Tk <1l YweV,keD (16)
€T
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which permits to leave some trips without crew assignment. Then, the optimization problem
is now defined by constraints (3.1)-(10) and (16), but with the values z~ and z™ fixed by the
user (the case 2~ = 0 and z™ = oo are also allowed), with the objective function:

max Z Tiok amn

i€T, veV, keD

which corresponds to maximize the number of served trips. This formulation may leave
some uncovered trips (when the original set of constraints is unfeasible), but that can be fixed
through the objective function (17).

Given the simplified formulation above, one can solve the problem of finding a balanced trips
allocation combining the mathematical model with a heuristic routine which implements local
search. The local search routine consists of 3 stages of resolution. First, using an optimiza-
tion solver we find a feasible solution, where every trip is served, using the relaxed model.
The feasible schedule resulting of stage 1 is given as an input for stage 2, where the whole
diagram is fragmented into blocks of few weeks (ideally, blocks must have a maximum size
10 weeks). The local search based heuristic is an iterative routine that takes a block, fixes the
variables outside it and lets the variables within free for re-optimization, applying the model
for finding a balanced solution. This process is repeated m times, travelling through all weeks
and solving a sub-problem on each iteration. Finally, one last re-optimization is made, releas-
ing all variables and applying the balanced solution model to the whole diagram, with a time
limit constraint in order to ensure the process will end within a reasonable execution time.

This approach takes advantage of the fact that solving a problem using warm start strategies
decreases the execution time, since the number of feasible branches is immediately reduced
in the Branch and Bound algorithm. This, combined with the strong reduction of complexity
when multiple sub-problems are solved instead of an unique big problem, highly decreases
the execution time and provides very balanced solutions, as we will see in Section 6.

The model (13)-(15), that deals with the assignment of crews to the schedules weeks is a
simple bipartite graph, where source nodes are represented by crews and destination nodes
by the scheduled weeks. A one-to-one assignment is then performed. The feasibility depends
on the initial conditions of crews, mainly the current location, the accumulated worked hours
and the last legal rest day. The cost of the arcs is the square of the difference between the
normalized coefficients of the crew accumulated load and the load of the scheduled week.
Thus, the objective function is to maximize the sum of the arcs pondered by their cost, forc-
ing highly loaded crews be assigned to lightly loaded weeks and vice versa, attempting to
maintain a balanced hour schedule after the assignment.

Optimization models and heuristics routines were written in AMPL programming language,
that provides enough flexibility for a big range of operations. The routines were packaged
within a Java based user interface. The main features of this software is to allow the user to
solve different problems for various scenarios, changing parameters such as number of crews,
trips attributes and time limit. It also allows the easy interaction for uploading the data files
and downloading the output solution, in different format files. The user can remotely submit
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big instances of the model using HPC resources.

The interface follows a sequence of stages for each executed instance:

1. Read/Transform data to AMPL language.
2. Connect to the HPC through SSH.
3. Send data to High-Performance computer.

4, Trigger the execution routine.

§6. Case studies

In this section, we present numeric results obtained using the algorithm presented in Section
5 for finding a balanced solution, in terms of execution time and performance.

Along the path of this train network, there are different courses that cover various geographic
zones with variable extension and operative characteristics. This implies that there are differ-
ent types of schedules, depending on the operation zone, with variable dimensions in terms
of number of variables, according to the number of crews and trips to serve. Through test ex-
periments and models validation, we detected that execution time increases with the number
of variables and also, this effect is specially critical when the model for finding a balanced
solution is applied.

Tests using the heuristic algorithm shown it is possible to achieve balanced schedules in a
third of the time taken by the balanced solution model and this result can be improved even
10 times when the heuristic algorithm is applied to medium size problems. Below, we show
some results for large scale and medium size cases, when the executions were run using HPC
resources and the licensed optimization solver mentioned before.

The first result corresponds to a complex scenario with 52 crews (weeks) and 33 regular trips
{(from Monday to Sunday). The problem execution stops at 60.000 seconds ( 16,7 hours) due
to the time limit, set at 60.000 for this case. This solution has a standard deviation of 4,12
for the weekly hours. For the same problem but using the heuristic algorithm, the execution
time falls to 22.000 seconds with an optimum solution with 3,06 hours as standard deviation
for weekly load.

For a medium size problem, with 35 crews and 20 regular trips, the execution time decreases
from 60.000 seconds (detention for time limit), obtained with the balanced hours model, to
1260 seconds when using the heuristic algorithm, while standard deviation for weekly hours
goes from 5,03 to 4,98, respectively.

For small size problems with 10 to 15 crews, the balanced hours model works very quickly
because the number of variables and constraints of the problem is perfectly handled by the
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software, even when the local Open source optimization software is used in a common com-
puter. Thus, it doesn’t seem very useful for this case the heuristic option, being sometimes
more time consuming than the balanced hours model.

§7. Conclusions

We presented a crew scheduling modeling, with the special characteristic of including a ro-
tation constraint that delivers balanced load in terms of work load among crews and also,
generates a reusable and infinite time horizon schedule.

The balanced hours model can be slightly modified in order to generate a balanced schedule
in a reduced execution time, by relaxing the one-trip one crew constraint and adding upper
and lower bounds to the total weekly hours. The risk when we use this model is to obtain
infeasible solutions because the constraint of serving all trips is not strict and thus could be
violated.

The complexity of the problem when the size of the problem increases leads to high exe-
cution times, which was faced by implementing a heuristic algorithm that combines warm
start strategies with a local search iterative routine. Results are very encouraging, showing a
strong reduction of the execution time for medium and large scale cases.
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