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Abstract

In this paper we establish a differential equalion whose solution
ts a desecent eurve for a certain funetion. The ezistence, unigue-
ness and properties of this solution are also analyzed. Finally, a
generalized gradient path elgorithm is proposed
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1.- Introduction

In the last years, a good volume of research has been dedicated to curvi-
linear search algorithms for unconstrained optimization ([1], [4], 5,[8],[9]).
The origin of many of these algorithms seems to be the differential equation

Ht) = —A@E()Vi(=l) 20

£(0) = (1.1)

where f : R* — IR is a C? - class function and A4 : R" — R""" is a
symmetric C! - class matrix.
These case A(z) = I, ¥z & IR", has been already analyzed and, in

particular, Botsaris [4] under appropriate hypothesis is that the solution of
Z(t) ==V [(=z(t t=0

H)=-Vi=)  t2 -

z(0) = =z,

converges to a minimizer of f, as t — co.
From the differential equation (1.2} a curvilinear search algorithm has
been proposed based on the iteration formula ([5],[8])
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Teyy = T+ (g7t =) — I H(z) 7'V f(z) (1.3)

where the matrix A (z,) denotes the hessian matrix of f evaluated at z, and
t, is chosen according to some stepsize strategy. In fact, by appreximating
the right hand side of (1.2) to the first order, we obtain

z(t) = —H(z,)z(t) + H(zo)zo — V£ (za)

2{0] =i, et)

which is a linear differential equation whose solution is of the form (1.3).
For more details, see the references ([4,5],.7,/8]).

Our interest is to analyze existence, unigueness, and some properties of
the solution of (1.1).

2.- Existence and Uniqueness of the Solution

The first question arising is if a unique solution for the differential
equation (1.1) exists. To prove that it does, we will assume that z, £ R"
is chosen such that the set L, = {x € R"/f(z) < f(z,)} is compact.

The following result will be needed in our analysis.

Lemma 2.1. Let y :la,b|— R",a < b < o, be a C* -class function such
that
fig(t) < K Yt e, b

for some K > 0. Then, lim y{t) and lim y(t) exist. &
t=nt t— b=

Lef F: R* — IR™ be a €' - class function defined by

F(z) = —A(z)Vf(2) (2.1)

and let U be a bounded open set containing Ly. The function F is Lips-
chitzian in U; in fact, V[ is bounded in U. So, for every ({,Z) € R x U
there exists a neighbourhood I{f) x V(z) € IR x U such that the equation

it)=F(z(t)) t>0 (2.2)

posses a unique solution in {(t) passing through (£, Z).

Definition 2.1. Let I,J < IR be intervals and let ¢ : J — IR" be a solution
of (2.2) on J. Let ¢ — IR™."Then ¢ is a maximal solution of (2.2) and I is
a maximal interval for (2.2) if I C J and $(t) = y(t) for all t € I implies
I=J. n

In the case t = 0, Z = z4, let z: I{0) — V(z;) be the solution of
(2.2). Let us assume that 2 is the maximal solution and I{0) = [0, w, |, with
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wy < co. Owing to the continuity of F and to the boundness of U, it is

clear that there exists a constant K > 0 verifying ||2(t)| < K,

Wt € I(0). Then, by applying lemma 2.1 2, = lim z(t) exists, which
e g =~

implies that the solution 2z can be continued to [0, ]. i
Now, it is easy to see that there exists a local solution z, for the equation

&(t) = F(z(t))

oS (2.3)

in Jw, — A,w, + Al forsome A > 0. By uniqueness, we have 2(t) =
z(t), Vt€lw, —A,w,], 5o z is not the maximal solution. In this manner,
the maximal interval of the solution of (1.1) must be [0,00[. In the next
section we will investigate some properties of that solution and prove that
this curve converges to a stationary point of f in L;, as t — co.

3.- Asymptotic Behaviour of the Solution

We will assume the following hypothesis:

(H1) L, is convex.

(H2) There exists a pair of constants my, M; > 0 such that, for all
= Lﬂ

my |Afl* << A(u)h, h >< M, ||A]? Yhe R® (3.1)

where || || denotes the euclidean norm in B".
(H3) There exists a constant m, > 0 such that, forallue R",y < L,
ma bl << Hy)h,h>,  Yhe R" (3.2)

where < v,w >, =< A(u)v,w > and ||hl? =< h.h>,.

First, it is easy to see that the solution z of (1.1) satisfies
z(t) & Ly, ¥t > 0. In fact, z is a descent curve, ie., the function
p : [0,00[— IR defined by p(t) = f(z(t)), satisfies (from (H2))

5(t) < —my |V F(=(e)] <o.

Thus, p is decreasing in [0, co| which implies that z(t) = L,, ¥t>o0.
The next theorem establishes the relationship between the diferential
equation (1.1) and a stationary point of f in L,.

Theorem 3.1. Let z be the solution of (1.1), and assume that the hypeth-
esis (H1), (H2) and (H3) are satisfied. Then, if z* is the unique stationary
point of f in L.

2(t) = 2" < ey — 27 (3.3)
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Proof: Let o, 1, be the functions defined by

o(t) =< zt) — z",z(t) — z* > t>0 (3.4)

n:(8) =< A{z(t))V f(sz(t) + (1 — s)z” ), z(t) — 2" > 0<s<1l (3.5)

It is clear that

{t) = -2 < Alz(t))Vf(z(2),z(t) — =" >= —Em{l]l (3.8)

and, by applying the mean value theorem to n, in [0, 1], we have

(1) =< A(z(t)) H(rz(t) + (1 — )z Y=z(t) — "), z(t) — z* > (3.7)

for some r €]0,1[. By substituting (3.7) in (3.6)

a(t) = -2 < H(rz(t) + (1 — r)z")(=(t) — z°), z(t) — 2" >,y (3.8)

for some r €]0,1][.

From (H1) we have rz(t) + (1 — r)z* € L, for all r €]0,1[ and, by
applying the hypothesis (H3) and (H2) to (3.8).

aft) < -EMsz{f—} T 34”:“;
i —2m1 e ||:I:{$} D "2 = _zmlmgﬂ'{t}
which implies
o(t) < e ™1™t g(0)
or
l2(t) — =] < e |lzo — 2| -

The abcove theorem shows that z(t) converges to z*, as t — co. On the
other hand, it can be proved that z* is asymptotically stable,in the Lyapunov
sense [7]. In fact, let ¥ be an open set such that z(t) € V C L, for all ¢ > 0,

and let £: V' — IR be a function defined by £(z) = f(z) — f(z*). It is not
hard to show that

(i) £=z)=0andf(z)>0 VYzeV, z

(i)  Le(z() <0 Vexo0

50, £ is a Lyapunov function for the equation (1.1) and z* is an asymptoti-
cally stable point.
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4.- A Generalized Gradient Path Algorithm

In the general case the solution of (1.1} cannot be found in analytic
form, but an approximated scheme can be used. By expanding the right
hand side of (1.1) to the first order around z,, we obtain the linear differ-
ential equation

5(t) = =T (z0)2(t) + I (2) 7 — A(20)V £ (z5)
#{0) = (4.1)

where J(z,) denotes the Jacobian matrix of F evaluated at z,. It is easy
to see that

T(20) = Y 05207, (20) + Alzo) (o) (42)

i=1

where g; denotes the j** coordinate of Vf and J, denotes the Jacobian

matrix of the j** column of A.
Under the assumption that J{z,)~* exists, the solution of (4.1) is

z(t) = zp + (e = I)J(25) " Az ) V Fiz0)

which suggest a curvilinear search algorithm based on the iteration formula

Lpypyp = Iy + {E.“t*'“ = I}J;]'Akgk [4.-3]

where J, = J(z:), 4i = A(z.),9. = Vi(ze) and ¢, is the stepsize.
The algorithm (4.3) belongs to a family characterized by the formula
Ik{t} = T = Sk {t}gk {4'4]

which has been treated in [1]. In our case

5u(t) = (e~ = J; ' A, (4.5)

We will assume that the stepsize ¢, is calculated by using an Armijo
type criterion [2]: let us consider 6,3 €0, 1] and the sequence {a*} in R";
then

te = max{A/A =a.f8'.s=0,1,2,...,

) {4.6)
F(z(A) £ flze) = A6 < g, Se(0)ge >}

The convergence of the algorithm defined by (4.4) with the choice {4.6) of
tx, has been established in [1], under the following hypothesis concerning
{S.} and z,:

(h1) z; is chosen such that L, is compact.

(h2) 5:(0) =0 ¥Yk=0,1,2,..
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(h3) s (0) is symmetrie, for all k = 0,1,2,... and there exists m,M >0
such that, for all 2z € k=012,
mzll" < 275, (0)z < M|z (4.7)
(h4) Tie sequence {S-k} is equicontinuous at zero, Le., Ye > 0,35 > 0
such that
:amm¢uimy~$ummge*ﬁ=m43w. (4.8)

where || ||, denotes de matrix norm [4llee = sup{||dv||/v & H;‘, o]l = 1}.
The hypothesis (h2) is obviously satisfied by the choice (4.5) of {8}

Let us examine (h3) and (hd). Tt is clear that
ék[t] =e M 4, E4.5}J
and
Se(0) = 4, (4.10)

so, (h3) is satisfied. In fact, the function A satisfies (H2).
On the other hand, by (4.9), (4.10), (H2) and the mean value theorem,

“Sk {U} = S+k {fJHm = “Ak g A Hm
< e — Iluy [ Ak |l
S Met* - Il (4.11)
= Mitfle™ Ml | Tk s
< M, tet+lelle N5 oo
for some £, €]0,t[.

The choice (4.6) of ¢, ensures that z, € Ly, ¥k = 0,1,2,... and owing
to the continuity of J we have

Welleo = 17 (z0)|co < (4.12)
for some v > 0. From (4.11) and (4.12),

ugﬁu—anmmgqmngT (4.13)

which implies the equicontinuity of {5, } at zero, i.e. (h4) is verified.

In this manner, the algorithm defined by (4.3) and (4.6) converges to
stationary point of £
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