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Abstract

The purpose of this paper is to establish, for curwvilinear
algorithms,  general hypotheses under which econvergence
oeeurs to points satisfying second order necessary conditions for
minimality. A gradient path algorithm and e negative
curvalure strategy are both examined in this contezt.
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1.- Introduction

Most unconstrained mathematical programuing algorithms are such
that all a user can be assured of is that they will converge to station-
ary points. Besides these, however, there exist algorithms aimed at ap-
proximating stationary points satisfying second order necessary minimality
conditions as well.

Attempts to devise algorithms of the latter type can be found in several
papers, e.g., McCormick (6], Moré and Sorensen |7] and Goldfarb [5], who

il
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have all used the notion of negative curvature. Apart from their results,
gradient path algorithms ([4], [8]) have also been adapied fo approximate
points of such nature [3].

In this work, hypotheses are established under which the stationary
points to which general curvilinear’ search zlgorithms will converge are
guaranted to also satisfy second order necessary conditions to be local
minima. We assume that the trajectory, where the new iterate will be
chosen at each iteration, is sufficiently smooth.

2.- The algorithm.

Let f: R* - R be a class-C* function which we want to minimize,
and d: R* x B* — R™ a function such that, for all z € B",d(0,z) = z. We
suppose that, for every £ € R", the trajectory d(¢,z) is C* in t > 0. This
is the case, for example, of linear combinations of descent and/or negative
curvature directions, with twice continuously differentiable coefficients, as
shown in section 5.

Given z in R", the function d{t,z) describes a trajectory in E" origi-
nating at z. The minimization algorithm gives rise to a sequence {z,} in
" through

Ty e, &M
Tt {d(:,,,zk] if 2, & M (2:3)

where M = {z € R*/Vf(z) = 0and < H(z)h,h >=0, he€ R"}, VS
and H denoting the gradient vector and the hessian matrix of f, respectively.

The step size is determined in accordance with a strategy of the Armijo
type ([1], [2], [6]) as follows: for z € R", we define the class-C? function
i, + BRY — R by

p.(t) = f(dt,2))  teR? (2.2)

This function is shown to satisfy

@, (0) =< gi,d(0,z,) > and

@) (0) =< Hd(0,z:),d(0,2:) > + < g, (0, z) >,

where g, and H, respectively denote the gradient and the hessian matrix
of f, both evaluated at z. d and d denotes respectively the first and second
derivatives of d with respect to .

Let 6,8 €]0,1] and @, > 0 be given, and be A, denotes the
min{0, ! (0)}. The stepsize t, is then defined by the following rule:

2

if o, (o) > w,k{ﬂ}+5mp;*{ﬂ]+5%ﬂk, then
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32
te = max{d = 0, 0" /s = 0,1,2,...;0,, (A) < ., (0) + 6ol (0) + E?ﬂk},

(2.3)
Otherwise

2
t, = fmin{) = %,ﬁs =0,1,2,...;0:, (A) > ., (0) + 82, (0) + 6%&.,:}.

(2.4)
This procedure guarantees that the interval [t ,t. /8] contains at least
one value f, satisfying

i 7 B
'{F’zk{tk} = ﬁozk{ﬁ] + ‘5tk5ﬂ’;k{ﬂ} - ,ﬁ%ﬁk

We shall make use of this fact in the next section to prove the
convergence of algorithm (2.1) without resorting to additional hypotheses
on the sequence {a, }.

3.- Convergence of the algorithm.

It is our objective to have algorithm (2.1) approximate points of M, in
view of which we set down the following assumptions:

L={ze R"/f(z) £ f(zs)} is compact , (3.1)
©.(0) <0 forall z¢ M, (3.2)
if z ¢ M and ¢, (0) =0, then ¢! (0) <0. (3.3)

The first assumption is standard. The second one says that the tra-
jectory d(t,z) emerges from z in a nonincreasing direction. The third
assumption guarants that, if the first derivative of ¢, is zero, the trayectory
emerges from z in a negative curvature direction.

The next lemma shows that the stepsize t, is well defined.

Lemma 3.1. Let z, ¢ M and 6,3, and A, as defined before. Under
assumptions (3.1), (3.2) and (3.3), the stepsize t, defined by (2.3) and (2.4)
exists.

Proof: Let us suppose that t, does not exists. There are two cases:

i) Forall A=ap',5=0,1,2,..

I —
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2
@2, (A) > ., (0) + 62p’._(0) + a%ah. (3.4)

If !, (0) = 0 then from (3.4) we have

Py (}‘] P, EG] ﬁ
X "2

Ay

and letting § — oo we find

1 i
P } . .
595.(0) 2 S
But, in view of (3.3), we have A, = ! (0) < 0, which contradicts the
choice of é.
If . (0) < 0 then from (3.4) we have

©., [A) — ., (0)
X

A
> 5':,0;* [:ﬂ} + Egﬂlg
and letting s — oo, we find

el (0) = 8¢’ (0)
which contradicts the choice of 6.

(i) Forall X=3%4, s=0,1,2,..

)L'E
wr, (A) < ., (0) + 6Xp. (0) + E?ﬂ*. (3.5)
The right hand side of (3.5) is obviously decreasing and unbounded as
A — oo, Then, we have ¢, (A\] & —oo0 as s — oo, which contradicts the
boundedness of f, which arises from assumption (3.1). W

The next theorem establishes the convergence of the algorithm.

Theorem 3.1. Under assumptions (3.1), (3.2) and (3.3), every adherent

point (and there exists one) of the sequence {r,} generated by algorithm
(2.1) belongs to M.

Proof: Let us suppose that z, & M for k = 0,1,2,... From the choice of
t, we have . (t.) < @.,(0), ie., the sequence {f(z.)} is decreasing, so
{z+} © L. Due to (3.1), the sequence {z,} has an adherent point z. Let
{z+, } be a subsequence converging to T and let us suppose that T & M.

From (2.3) and (2.4) we find that
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. Bric ;
(p-!n_l {tkjfﬂ} > w-‘k, [ﬂ] + 6 ﬂn 'P.nq__ {ﬂ} + 2,82

Besides, from Taylor’s theoremm we know that there exists a value
€ [0,t, /8] such that

REUA (3.6)

1

2

£
Pus, 14, /8= uy, 00 + 0L, (0) + o0l (0)

which takes us to

t
(1-8)el, (0)+ -zt'é-{p:ﬂ (6:,) — 64:,) >0 (3.7)
when substituted in (3.6).
We now analize the cases that may occur.

A) If {t,} i not bounded away from zero, without loss of
generality we can assume that ¢, — 0 as j — oco. Then 6., — 0 and
by continuity and other familiar arguments we trivially see that:

s, (0,) — ©:(0),
@4, (0) — ©5(0),
¥, (0) = ¢,(0)  and

Ay, — A = min{0,} (0)}.
Thus, from (3.7) we have

2, (0) > 0. (3.9)
Given that £ ¢ M, by (3.2) and (3.3) the expression (3.8) implies

£, (0) =0 (3.9)
and
0" (0) < 0. (3.10)

Let us return to (3.7). Given that z, ¢ M, by (3.2) we have
‘Ff, (8i,) — 64, > 0, which entails

w0} — A = 0. (3.11)

On the other hand, from (3.10) and the definition of A we have
A = 7 (0). Hence from (3.11) we get (1 — §)i’ (0) > 0, which implies
©%(0) > 0. This is a contradiction with (3.10).
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B) If {t.,} is bounded away from zero, without loss of
generality we assume that there exists 7 > 0 such that

te, =7 forall j=0,1,2,.. (3.12)
From (2.3) and (2.4) we have, for all k=0,1,2,...

tz
P (tn) € P2, (0) + btiipl, (0) + 62 A,
That is, in particular, by considering f [.'r*! = )< f {I"; +1), we have

12
f(2e,,,) — Fla,) < 86,00, (0) + 6 A, (3.13)

From (3.2) and the definition of A, , the right hand side of (3.13) is
nonpositive. So, by summing from 7 =0 to § = N in (3.13) and combining
with (3.12) we get

N N
FEne) ~ fan) SO Y0t O +65 3 A (314

I=0 I=0

The series } ! (0) and }_ A, are convergent, because if either di-
verges to —oo, then f(z,, ) diverges to —co, as N — oo, which contradicts
the boudedness of f in L.

Hence we necessarily have ), (0) —+0and Az, — 0 as j — co. Thus
¢, (0) = 0 and A = 0. By the definition of A, we finally have ©}(0) > 0,
which contradicts (3.3).

From (A) and (B) we conclude that 22 M. B

4.- A gradient path type algorithm.

Theorem 3.1 is used here to show that a modification proposed by
Auslender (3] of the gradient path local approximation ([4], [8]) converges
to a point in M. His strategy consist of adding, to the trajectory, a non-linear
term emerging in a direction of negative curvature. Such term depends on
the eigenvectors associated to the negative eigenvalues of the hessian matrix.
The resulting trajectory is given by

-th; _ 1

d[t,xk} = Ip ¥ E ﬂ_‘h— < Ui s Uy — 1 Z < U Qe = U

Ao#ED hy=0

gt 1
+ 3 — o (4.1)

A<D
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* where the hessian matrix H, is decomposed in the spectral form
| A ol
\: Hk = UkaUg =Iﬂ-_1_,...|u“I l "-_ E {4«2}
A, uy
and
0 if X>0
o, = { 1 if JI.,; < 0 and < Uy, q == Q {4+3}
-1 if X <ODand <u,g ><0

i' It is clear that d(., z,) is of class-C? and

d:l_'[], £y) = —gi — Uy, and

7 (4.4)
‘-‘ffﬂ'*zx} =H.g. + D U.o
where ¢ = (g, ,...,0,)7.
From (4.4) we have
#e, (0) = —llge|* = 0" UY gu, and
0y, (0) = 2g] Hige + 30" D U7 g, + 07 Dyo (4.5)

From (4.3) it is clear that o7 Ufge > 0 and so if z, ¢ M, we have
@, (0) < 0, which shows that (3.2) holds.

On the other hand, if . ¢ M and w., (0) =0, then from (4.5), g. = 0,
and therefore

v, (0) =0" Dyo = Z A <0

A<

Hence (3.3) also holds.
Thus the algorithm defined by trajectory (4.1} is shown to converge in
accordance with theorem 3.1.

5.~ A negative curvature strategy.
We can use theorem 3.1 to prove convergence in the case of a trajectory
proposed by Moré and Sorensen [7], which is given by
d(t,z.) = 2, + t%s; + tr, (5.1)
where ($,,7.) is 2 descent pair.

A descent pair satisfies

< gyyse >< 0 (5.2)
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"‘::g;:!rk }E 0 {5.3]

and
o =0 (5.4)

if H, is positive semidefinite, and

< es8e >=0 (5.5)

< gk, >0 (5.6)
and

ry Her <0 (5.7)

if H, is not positive semidefinite.
The only case where a descent pair does not exists occurs when z, € M.
For trajectory (5.1) we have

vl (0) =< gw,7e > and (5.8)

i f) = o Hyre +2< 05,8 > (5.9)

From (5.3) and (5.6), (3.2) is trivially verified.
Let us examine assumption (3.3). Assuming ) (0] = 0, we have two
cases:
(a) If H, is positive semidefinite, by applying (5.2) and (5.4), to the
expression (5.9), we obtain ! (0) < 0.
(b) If Hy is not pesitive semidefinite, by applying (5.5) and (5.7), to the
expression (5.9], we obtain p2 (0) <0.
The algorithm defined by curve (5.1) hence converges to a point
belonging to M.
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