
An Evolutionary Model for Underground Mining Planning 
José Saavedra 

Facultad de Ingeniería, Universidad de Los Andes. 
Marco Alfaro 

Facultad de Ingeniería, Universidad de Los Andes and Metalica Consultores S.A. 
Jorge Amaya 

Centro de Modelamiento Matemático, Universidad de Chile. 
 

In this work we present a methodological approach for finding near optimal solutions to the problem of 
defining plans for underground mines. This problem of obvious combinatorial nature is intractable by means 
of traditional techniques (Mixed Integer Programming for example). The approach proposed here is based in 
the mechanism of natural selection, we construct a Genetic Algorithm to conduct the search of a approximate 
solution to the problem. In order to acquire this objective, we first need a model which characterizes the 
gravitational flow of material from the drawpoints, the chosen model for this objective is a cellular automata 
specifically designed with very simple rules of local evolution. The model was implemented and tested, the 
time needed for a solution in real type cases is much less than the time human planner needs actually for the 
same task. Possible extensions to this model are presented. 

 
I. INTRODUCTION 

 
Underground mining operations are very complex in 
nature. The main factors that determine this complexity 
(between others) are the unsuitable knowledge of ore 
resources contained in the mine and the parameters that 
characterize them. From this point of view, we can 
obviously see that human planners are unable to 
handling this complexity and as a consequence very poor 
solutions are obtained.  
 
The problem of underground mining planning can be 
defined as choosing the best production plan in order to 
maximize the benefits derived from the operations. This 
planning could be made in three distinct scenarios: short 
term (operational), mid term (tactical) and long term 
(strategical). In this paper we focus our attention to the 
operational case. 
 
Many resources are wasted in preparing mining plans. 
Usually this task takes two or three workers dedicated 
only to this work. Moreover, they don’t have any tools 
available and this imposes on the final solutions the 
human planner bias. Some efforts have been made to 
solve this situation. From the point of view of classical 
optimization we can consider a model that has the 
following features: 
 

• The mine is subdivided into blocks of 
homogeneous dimensions that conform a 
domain without holes (edge connected). 

• When we extract a block from a given 
drawpoint, the blocks that are in the same 

column descend in one position (precedence 
restrictions) . 

• Ore extraction is supposed to be realized in a 
soft manner, in the sense that adjacent columns 
can’t show high differences in height, this 
restriction prevents dilution entry. 

 
• Usually the objective function of this kind of 

models is the Net Present Value (NPV) of the 
economic result of the business derived from the 
operations.  

 
this point of view is the dominant one presented in the 
work [6]. 

 
One of the problems that isn’t resolved by this approach 
is the incorporation of the stochastic behavior of 
Gravitational Flow. Because of this, we call to this kind 
of models deterministic. 
 
Another important source of problems in this 
deterministic perspective is the combinatorial explosion 
of the problem. We have the following result: 
Proposition I.1 
If we call mlkS ,,  the number of feasible sequences in a 
sector of k  blocks width by l  blocks length by m  
blocks height, with lkm ,≤ , the we have 

)!()( ,, mlkSlk mlk
m ⋅⋅<<⋅  

the proof of this proposition can be found in the work 
[7]. As an application of this result, if we consider a 
sector with dimensions 152020 ⋅⋅=⋅⋅= mlkn  then 



we are in presence of at least 3915 1007.1400 ×≈  
possible sequences, if we take 1 second in evaluating 
each one of this sequences then we need at least 
34048129883307965499746321664130 years in order to 
resolve this problem. So an obvious conclusion is that 
exhaustive search is a very bad strategy for this class of 
problems. 
 
Of course not every sequence is feasible. One possible 
choice, in order to reduce this high number of sequences, 
is to make an algorithm that can generate feasible 
sequences. It’s not hard to see that this approach faces 
other problems that are not easy to resolve, for example 
to decide if a given sequence is feasible. 
 
In this paper we propose a model that breaks this 
classical approach to the problem of underground 
mining planning. We choose as an alternative an 
Evolutionary Model because of the flexibility and good 
empirical results in problems of higher complexity (like 
the one presented here). 
 

II. EVOLUTIONARY ALGORITHMS 
 
Genetic Algorithms (GA from now) were introduced by 
John Holland in 1975. They are inspired in Darwin’s 
mechanisms of natural selection. Such mechanisms 
establish that an individual is generated as a mixture of 
the genes from his parents by means of crossover, added 
to this process of mixture there is a process called 
mutation (change in some segments of genetic material).  
 
This last mechanism implies in some way evolution 
because add novel elements not present in the genetic 
information from parents. Finally, the adaptation to the 
medium makes that some individuals survive and inherit 
their genes to his sons. The general form of an 
Evolutionary Algorithm is the following: 
  t := 0; 
  initialize(P(0)); 
  evaluate(P(0)); 
  While Not has been done Do 
      P’(t) := select parents(P(t)); 
      P’’(t) := recombinate(P’(t)); 
      P’’’(t) := mutate(P’’(t)); 
      evaluate(P’’’(t)); 
      P(t + 1) := natural selection(P(t); P’’’(t)); 
      t := t + 1;   
  Next 
In this Algorithm t is the counter of generations and 
evaluate (P) implies to evaluate fitness function to every 
member of population P. This algorithm finish when the 

fitness value of actual population P(t) in time t don’t 
innovate or after a fixed number of iterations. 
 
The considerations in the moment of implementing GA 
strategies are: chromosomic representation, population 
size, fitness function, crossover and mutation operators, 
crossover and mutation probabilities. For further reading 
on this technique go to references [3], [5], [7]. 
 

III. MODELS FOR GRAVITATIONAL FLOW 
 
If we want to incorporate the stochastic behavior of 
granular flow in our model we need first consider 
models for this phenomenon. 
 
In the last decade, some efforts have been made. The 
main results were obtained by chilean well known 
scientists, Eric Goles [1] and Servet Martínez [4]. These 
two approaches are similar in the kind of technique used, 
both are cellular automata models. 
 
Another interesting model is the one proposed by 
Gregorio González [2]. In this work the ideas presented 
in [1] are refined. Applications to underground mining 
are presented. 
 
The most recent development in this area is the model 
presented by Marco Alfaro [8]. This model is a Cellular 
Automata that has the benefit of simple rules of 
evolution, and as a consequence, it’s possible to obtain a 
efficient implementation [9]. 
 
Independent of the chosen model, it’s fundamental for 
the proposed methodology to have some gravitational 
flow model. As we will see in the next section, our 
model consider a gravitational flow model in the kernel 
of the evaluation function of the proposed genetic 
algorithm. 
 

IV. PROPOSED EVOLUTIONARY MODEL 
 

A. Extraction Charts 
Operations in underground mining are realized in turns. 
Such turns are usually of 8 hours each one and each day 
is divided in three turns. Given a set of drawpoints  

n
ii 1}{ =η   a Extraction Chart is an assignment of tons to 

extract for each drawpoint en each turn. We can if we 
wish consider another kinds of periods like days, weeks, 
months, etc. Formally: 
Definition IV.1  



Given a set of drawpoints n
ii 1}{ =η  we define a Extraction 

Chart as a matrix )(ZnmMM ×∈  with n the number of 
drawpoints and m the number of turns. The coefficient 

ijm  of this matrix is defined as: 

=:ijm  tons (expressed in shovels) to extract in 
drawpoint j in turn i 

Observation IV.1 
Extraction Chart M don’t have to be a square matrix. 
 
If we call iD  to demand (in shovels) in turn i then we 
have 

∑
=

≤
n
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 “≤ ·” in the last restriction gives the choice of not satisfy 
the hole demand, if not we could force our algorithm to 
extract blocks that gives worse solutions. 
 

B. Chromosome Representation 
The natural chromosome representation for a extraction 
chart is a matrix like the one previously defined. This 
will be the formal structure in which we will define the 
crossover and mutation operators. 
 

C. Crossover Operator 
Given two individuals (matrix) from a given population, 
for example M;N, we define the associated crossover 
operator as:  
 

• We select randomly a number in the set 
},,1{ m   (i.e. we select randomly a turn). Let 

*i  such number. 
• We consider the submatrices of M and N given 

by 
*

11 )( i
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= , },,1{ nj ∈  and analog for 
N.  

• We define the new matrices 
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This crossover operator guarantees feasibility from turn 
to turn of extraction charts, this because we maintain 
demand inequality in each turn. 
 

D. Mutation Operator 
To define a mutation operator we have to randomly 
select a turn (row in the extraction matrix). We proceed 
then to re-balance the selected row with a number 
randomly chosen between 0 and the demand of the turn, 
then we distribute randomly in to the selected turn. This 
operator guarantees feasibility of the selected row (the 
number chosen is less than demand). 
 

E. Fitness Function 
In order to evaluate the fitness of a extraction chart we 
have to run a simulation of the chart and then obtain a 
list of blocks with laws of ore grades. With this 
information we can obtain the benefit given by that 
extraction chart incorporating NPV in this calculation. 
 

F. The Algorithm 
The search algorithm is described with the following 
pseudo-code: 
 
Algorithm. 
Inputs: 
  Block Model 
  Location of Drawpoints 
  Population Size n 
  Parameters: Crossover and Mutation Probabilities 
  Iterations ν  
  Probabilities for Cellular Automata 
Outputs: 
  Optimal Extraction Chart 
Algorithm: 
  Initialize Extraction Charts Population (n Extraction Charts): 
    P(0); 
  Fitness Evaluation(P(0)); 
  For t = 0 To ν  
  Begin 
      Crossover(P(t)):  P(t + 1); 
      Mutation(P(t + 1)); 
      Fitness Evaluation(P(t + 1)); 
      Next Generation Selection(P(t),P(t + 1)); 
  End For 
 
Function Fitness Evaluation(P(t)); 
  For i = 1 To n 
  Begin 
      Simulate(Extraction Chart i(t)); 
          ↵  Cellular Automata(Extraction Chart i(t)); 
          ↵  Economic Evaluation(Extraction Chart i(t)); 
  End For 
End Function 
 

V. NUMERICAL RESULTS 
 



A. Trivial Case 
This case is a sector of 4 by 4 by 4 blocks, all of them 
with grade 0, i.e. sterile. This simple example has only 
two extraction points, one in coordinates (1; 1; 0) and 
the other in coordinates (3; 2; 0). The obvious solution 
to this problem is to extract nothing from drawpoints. 
This example was tested with the following parameters: 
 

Application Parameters 
Turn Number 5 
Max. Demand in each Turn 10 

 

 
GA Parameters 

Iterations Number 100 
Population Size 10 
Crossover Probability 0.8 
Mutation Probability 0.2 
Selection Policy Between Parents and Sons 
Selection Method Drawing 

 

 
The Cellular Automata transition Probabilities are given 
by the following table: 
 

0.02 0.10 0.02 
0.10 0.51 0.10 
0.02 0.10 0.02 

 
The solution to this problem was obtained in 63 
iterations. 
 
The results of the iterations are summarized in the 
following picture. This picture illustrate the behavior of 
the best solution in each iteration: 
 

 
FIG. 1: Best Individual Evolution. 

 
As we can see, the algorithm generates a sequence of 
solutions in which each one is at least equal or better 
than the previous. 

B. Calibration of Model Parameters 
In order to operate this GA, we need calibrate the 
functional parameters. The used example was the 
previous one. We will vary crossover and mutation 
probabilities. 
 
To denote the instances of the problem we will use the 
notation An1/n2M, where n1 is crossover probability, n2 
mutation probability, selection method A (Parents and 
Sons: PH; Only Sons: SH) and parent selection M 
(Roulette: R; Drawing: S). 
 
Each instance was runned 30 times and we determine in 
which generation we reach the optimum. The following 
table resumes the results. 
 

Instance Mean Standard Deviation 
PH80/20S 64.93 22.89 
PH90/30S 50.17  21.55 
PH80/30S 45.70  20.36 
PH80/40S 38.33  20.33 
PH80/50S 35.40  15.70 
PH90/20S 61.13  27.64 
PH100/20S 55.23  27.17 
PH100/0S 100.00  0.00 (*) 
PH100/100S  31.70  9.50 
SH100/100S  100.00  0.00 (*) 
SH80/20S  100.00 0.00 (*) 
PH100/100R  28.97  15.01 

(*) means that instance doesn’t converge never in 100 
iterations. 
 

C. Another Factors 
We prove many others effects: Maximum Demand, 
Number of Blocks, Population Size, Drawpoints 
Number. 
 
Almost all of them gives a linear dependence between 
the number of iterations needed to reach the optimum 
and the increase of the values. The only factor that 
shows exponential behavior is Maximum Demand, i.e., 
if we vary the Maximum Demand parameter then the 
number of iterations needed to converge grows 
exponentially. We summarize this effects in the 
following table: 
 
Effect Variation Result 
Max. Demand Grow Exponential Grow 
Number of Blocks Grow Linear Grow 
Population Size Grow Linear Decrease 
Drawpoints Number Grow Linear Grow 



D. Real Scale Example 
This example was runned with the following parameters:  
 
 

Application Parameters 
Turn Number 12 
Max. Demand in each Turn 100 
Number of Drawpoints 171 
Number of Blocks 400000 

 

 
GA Parameters 

Iterations Number 34 
Population Size 8 
Crossover Probability 1 
Mutation Probability 1 
Selection Policy Between Parents and Sons 
Selection Method Drawing 

 

 
The results are summarized in the following table: 
 

Results 
Execution Time 3:11 
Iterations Number 34 

 

 
We can extrapolate this result and see that in real 
situations it would take about 8 hours to finish the 
optimization process. 
 

VI. EXTENSIONS TO THE MODEL 
 
The proposed model don’t consider downstream 
operations. These operations are in general the most 
restrictive operations. For example in some downstream 
operations smooth ore grade is required, the fine mid 
term promise has to be accomplished, etc. In all of these 
cases the proposed model don’t give an answer.  
 
Recently, an extension of the model proposed in this 
paper have been implemented [10]. This model uses 
Genetic Algorithms too and the main characteristics are: 

1. Genetic Algorithms mechanisms in the search of 
solutions. 

2. Mixture Models for Ore Unload. 
3. Operations are considered as transport problem. 
4. Restrictions on the quantity of ore to be 

extracted from drawpoints are imposed.  
5. Capacity constraints in downstream operations 

are considered. 
6. NPV evaluation. 
7. Drawpoint Grade behavior is assumed. 

In real type situations, the response time of this 
implementation are in the order of 3:00 hrs [10]. 
 
The next challenge is to integrate the model proposed in 
[7] whit the one proposed in [10]. Both models were 
constructed with the same philosophy so we can expect 
some kind of integration and scale economies between + 
both models. 
 
In the future we hope to construct a model that 
incorporates gravitational flow simulations and 
downstream operations. 
 
Another source of extensions to the model is to consider 
operational events as stochastic processes. In this way 
simulations of extraction charts would be more realistic. 
In order to accomplish this objective is needed historical 
data to calibrate the parameters of the involved 
stochastic processes. 
 

VII. CONCLUSIONS 
 
As an obvious first conclusion we have that this problem 
has a very large number of involved variables. 
 
In this moment it’s really very difficult consider the hole 
complexity of this problem. For example at the moment 
there aren’t appropriate models to handle the breaking of 
the solid rock. 
 
Another important conclusion is that the stochastic 
nature of the phenomenon is hard to include in the 
modeling process. Some attempts have been made but at 
the moment this efforts are in initial development. The 
proposed methodology could be applied in real type 
situations. The response times are good compared with 
human planners. The most important advantages of the 
methodology is that we can test in an efficient way many 
choices and that the search procedure is well conducted.  
 
With this methodology we are in presence of a flexible 
model that can be customized to satisfy the planner 
needs. 
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