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Abstract

A critical aspect of long-term open-pit mine planning consists in computing a production schedule based
upon a block sequencing strategy. Such a schedule should specify when and if blocks should be extracted
in such a way as to maximize NPV, while satisfying wall-slope and production capacity constraints. It is
well known that this problem can be modeled with integer programming (IP). However, integer
programming is not used in practice because the size of typical block models makes such problems
intractable to standard IP solvers. In this article we describe a scalable IP-based methodology for solving
very large (millions of blocks) instances of this problem. We show that embedding standard IP
technologies in a local-search based algorithm we are able to obtain near-optimal solutions to large
problems in reasonable time. This methodology has been tested in several mine wide block models.
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Introduction

The long term planning of a mine operation consists of defining the life of the mine, the mining reserves,
the capital requirements and the production capacity at which the value of the project will be maximized.
These decisions enable analysts to make a decision of whether or not to invest to carry on the mining
endeavor. The main steps to overcome in open pit mining are the computation of a regular block model,
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the delineation of the final pit, the definition of a pushback sequence and the computation of a production
schedule.

Traditionally the open pit planning problem has been solved in several steps in order to have a solution in

a reasonable time frame for mine operations. The steps are described as follows:

e Block value model: this step consists of defining a block economic value as a function of the metals
content, prices, costs. This step defines a priori the final destination of the block, which in a trivial
operation would the definition of ore and waste

e Final pit limit: this step consists of applying the Lerchs and Grossman (1965) algorithm to define the
economic boundary that maximizes cumulative profit subject to the required slope angles.

e Pushback sequencing: this step consists of iteratively changing the original block values obtaining a
sequence of nested pit limits. This is then used to define the different volumes of the ore body that
would be available in time to feed a production schedule.

e Cut off grades: the cut of grades are computed to define the destination of the blocks, i.e., mill, leach
pad, waste dump, that are available in the different pushbacks previously computed.

See Hustrulid and Kuchta (2006) for a more thorough introduction to open-pit mine planning.

To our knowledge, the first effort to formally describe a mathematical model to solve this problem in an
integrated way is the work of Johnson (1968). Given the large size and inherent difficulty of Johnson’s
model, most articles in the academic literature consider a simplified version of the problem with a single
methodology for block extraction. In these models it is decided a-priori what will be done with each block
before it is even extracted. More specifically, using economic or fixed grade cut-off criteria, it is decided
if the block will go to a mill for processing, or to a waste dump, regardless of what other blocks may be
extracted, and how they are processed.

We formally describe this model as follows. Let B represent the set of blocks, ¢, the number of time
periods, and 7, the number of different resource types (for example, milling capacity, or trucking

capacity). For each block b and each time period t define a variable,

__ {1 ifblock b has been extracted by time t,
xb,l T 0 otherwise.

We define three important families of constraints for this model. The first constraint is for consistency of
the variable definition. For every block b and every (non-final) time period ¢ define constraint,

Xy SXp 0 (1)

The second family of constraints imposes the wall-slope (or precedence) condition. That is, if block a is
immediately above block b, or, if block a should be extracted before block & in order to ensure that the
resulting wall-slope of the pit is not too steep, for every time period ¢ define constraint,

Xy SX,, )

Finally, for each resource » and each time period ¢, there should be a constraint of the form,

qu,b (xy, —Xp,0) SC,, (3)

beB
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where g, , represents the amount of resource r consumed by extracting block b, and ¢,, de nes the

amount of resource r available in time period ¢. The objective function of the problem consists in
maximizing,

tmax
Z Zpb,t(xb,t - xb,z—l) 4)

t=1beB

where p, , represents the net present value of extracting block b in time period ¢. For consistency
purposes of these last two family of constraints we will assume that x, ,= 0 for 7= 0.

Henceforth we will refer to the problem of maximizing (4) subject to (1), (2), (3) and integrality
constraints as the Resource-Constraint Pit optimization problem, or RC-PIT.

The RC-PIT problem is very difficult to solve in practice because real block models can be very large,
thus leading to problems with an intractable amount of variables. A number of authors have contributed to
improved integer programming techniques for the RC-PIT problem. Some important contributions,
among many others, include those of Johnson (1968), Dagdelen (1985), Dagdelen and Johnson (1986),
Caccetta and Hill (2003), Ramazan and Dimitrakopolous (2004), Fricke (2006), Boland et al. (2007) and
Gaupp (2008). Interested readers should refer to Osanloo et al. (2008) for a more detailed review of exact
optimization work on this problem.

While each of these methods has contributed to faster solution times, solving problem instances with
more than 100,000 blocks remains elusive. Perhaps the only exception to this can be found in the work of
Caccetta and Hill (2003) where it is claimed that instances with up to 250,000 blocks are solved.
Unfortunately, due to commercial reasons, the authors do not back this claim with any replicable
algorithm or methodology, except for preprocessing scheme. Moving beyond 250,000 blocks is made
more difficult by the fact that just representing such large problems in memory can be very difficult.
Today commercial packages such as Whittle 4X can handle up to 1.5 million blocks that need to be re-
blocked in order to find a pit limit.

We now present a methodology for tackling very large problems (several millions of blocks). This
methodology does not require block aggregation in order to work, and builds on previously developed
integer programming developments. Thus, any improvements to state-of-the art integer programming
methodologies for RC-PIT can be combined with our approach. Finally, this method is scalable and
parallelizable. That is, the methodology will work regardless of the problem size and its performance will
greatly improve in parallel computation frameworks.

The idea of the method is simple. Starting from a known feasible solution (which we call the incumbent),
our approach seeks to find a solution which is “similar” and which yields an improved objective function
value. In order to do this, the algorithm uses the incumbent as a guide by only considering alternative
solutions that partially coincide with the incumbent. This is accomplished by means of a random search
that iteratively fixes parts of the schedule and tries to optimally improve the remaining “unfixed” part
using an integer-programming model. Whenever improvements are found the incumbent is updated, and
the process is repeated. This type of approach is known in the literature as a Local Search methodology.
For an introduction to this type of approach, see Aarts and Lenstra (2003).

In Section 2 we explain the methodology in more detail. In Section 3 we present computational results. In
Section 4 we conclude with some final remarks.
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Improving Feasible Solutions: A Local Search Heuristic

We will now represent feasible RC-PIT solutions with a vector u indicating the time at which each block
is extracted. In this way, if u, = t, we understand that block b is extracted in time t. We convene that u;, =
oc whenever a block b is never extracted in a solution.

Given a solution u and a subset of blocks 4 we define the 4-neighborhood of u as the set of all solutions
v which coincide with u everywhere except, possibly, the blocks in 4. More formally, v is in the 4-
neighborhood of u if and only if u#, =v_ for all blocks a ¢ A.

Given an incumbent solution u, our local-search algorithm works by iteratively defining different sets of
blocks 4 and finding, for each of these, a solution v in the 4-neighborhood of # having the best possible
objective function value. Given u and A, this can be accomplished using the formulation described in
Section 1, adding additional constraints to ensure that blocks a ¢ A are scheduled in the exact time that
they are scheduled in u. More specifically, for each a ¢ A define constraints,

X

at

X

at

=1 forallt>u_, (5)
=0 forall t<u, (6)

and maximize (4) subject to (1), (2), (3), (5) and (6). Observe that solving this is equivalent to solving a
smaller version of the original RC-PIT problem, since constraints (5) and (6) are imposed in practice by
eliminating the corresponding variables and adjusting the right-hand sides. After solving the resulting
integer programming problem, we obtain a solution v by setting v, =¢ if and only if x,, —x,,, =1.1If
solution v has a better objective function value than u, we update the incumbent and repeat the process.
If not, we attempt again with a different set A.

The key to using this method effectively is in choosing the proper sets A. Ideally, one would like to
choose sets 4 which are small enough to ensure that the reduced RC-PIT instances can be solved quickly,
and yet large enough so as to ensure that there exist improving solutions in the neighborhood. We next
describe three basic strategies which we found work well in our test data.

a. The “Cone-Above” strategy.

Consider a block b, and define P(b) as the set of all blocks which are predecessors of b. That is,
block a will belong to P(b) if and only if block @ must be extracted before block b due to wall-slope
constraints, or because block a is immediately above block b. In order to find a local improvement
to a solution # we randomly select a block b and find the best solution in the P(b)-neighborhood of
u as indicated above. This is illustrated in Figure 1.
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Blocks extracted in
the initial solution

Blocks re-optimized

Blocks not extracted in
the original solution

Block considered

Figure 1: Illustration of the “cone-above” strategy
b. The “Periods” strategy.

Consider time periods ¢, and ¢,, and a solution vector u. Define the set,
I(t,t,,uy={be B:t,<u, <t}

That is, /(#,,t,,u) represents the set of all blocks extracted in solutionu between time periods ¢,
and f,. Observe that if #, = oo this could include blocks that are not extracted.

In order to find a local improvement of solution # we randomly select a pair of time periods #, and
t, such that |t2 - tl| is not too large, and find the best solution in the /(#,,¢,,u)-neighborhood of u.

c. The “Transversal” strategy.
Consider a distance d, and a height 4. Define D(d,h) as the set of all blocks at a vertical distance no
greater than d of the set of blocks with height 4. In order to find a local improvement of solution u
we randomly select a height # and a distance d that is not too large, and find the best solution in the
D(d,h)-neighborhood of u.

We found that combining the use of these strategies helped to avoid getting stuck in local optima.

Case Studies: Analysis of Four Mines

Computational experiments were performed in four different ore bodies that are presented as follows:
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Table 1: Description of the ore bodies used for the study

Name # Blocks Grade range Observations

Marvin 61x60x17 0.03-1.46 %Cu fictitious copper gold ore body
0.1-1.2 ppm Au included in the Whittle 4X mine
planning software

AmericaMine 61x42x60 % Cu : 0.08-3.68 hard rock polymetallic mine
AsiaMine 112x230x38 0-1.91 % Cu Polymetallic ore body with a
pipe shape
Andina 184x269x121 0.02-3.64 % Cu Copper molybdenum ore body
0-0.42 % Mo taken from Andina Sur Sur

deposit located at 50 Km north of
Santiago. Typical porphyry
copper ore body

The computations were performed on a Dell Poweredge 1950 Server with two Intel Xeon Quad Core
E5345 processors (2.33 Ghz each) and 16GB of RAM. The software was written in the C programming
language and compiled using GCC v3.4.6 on a Linux CentOS 4.5 operating system. All optimization runs
were performed with the ILOG CPLEX v11.0 (henceforth CPLEX) optimization software callable library
(running on the default settings).

Table 2 summarizes information regarding the block models corresponding to each ore body. “N.
Blocks” describes the x,y,z dimensions of the raw block model. “Real Blocks” describes the amount of
blocks remaining after removing air blocks. “P.P. Blocks” describes the number of blocks remaining after
applying the ultimate-pit preprocessing scheme of Caccetta and Hill (2003) and the constrained
precedence knapsack preprocessing schemes used by Samphaiboon and Yamada (2000) and Gaupp
(2008). “N. Periods” describes the number of time periods considered. All subsequent computations were
performed on the preprocessed instances. As can be seen in Table 2, preprocessing reduces problem size
dramatically.

The first step in our computational experiments consisted of running the heuristic described by Gershon
(1987) in each of the problem instances. Second, we ran the proposed local search heuristic (starting from
the Gershon solution) for a period of 4 hours. Third, we solved the LP relaxation of the full problem
formulation. That is, the value obtained when solving the RC-PIT formulation directly using CPLEX, but
replacing the integrality requirement with the condition that variables should take continuous values
between 0 and 1. This value is a valid upper bound of the optimal solution, and hence serves as a guide to
estimate the quality of our methodology. Finally, we let CPLEX integer programming solver attempt to
solve each of the full RC-PIT problems to optimality. In Table 3 we present the results of these
experiments. In column “Local Search” we indicate the objective value reached by the local search. In
column “LP relaxation” we indicate the objective value of the LP relaxation. Finally, in the column “LP
time” we describe the time (in minutes) required to solve each LP relaxation. All objective function
values are given relative to the value obtained by the Gershon heuristic.

The first observation is that we were unable to solve the LP relaxation of the Andina mine since it was
much too large to even load in memory. Second, we let the CPLEX IP solver run for 12 hours on each of
the problem instances (except Andina), attempting to solve these problems and it could not find a feasible
solution for any of the problem instances.

As can be seen in Table 3, in Marvin, AmericaMine and AsiaMine we are able to obtain near-optimal
solutions in under 4 hours. While we can’t estimate how near optimality we are in the Andina mine (since
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we could not solve the LP relaxation, and hence have no upper bound to compare against), it can be seen
that the heuristic was able to afford a sizeable improvement in 4 hours despite the size of the problem.

The performance of our algorithm can be observed in more detail in Figure 2, where we track the
objective function value over time, from 0 to 3 hours. In order to compare the different instances we
normalize objective function values so that the LP relaxation upper bound has value 1.0. As can be seen
in the Figure 1 in the Marvin, AmericaMine and AsiaMine mines we are able to obtain solutions near 1%
optimality in just minutes.

As a final test, we let the local search algorithm run on the Andina mine for a full day. The objective
function values at 8, 16 and 24 hours of running were 1.15, 1.16 and 1.17 respectively. This shows that
though there are still important improvements to be found, they are modest relative to what is achieved in
4 hours.

Table 2: Description of the test set instances used for the study

N.Blocks Real P.P. N. Periods
Blocks Blocks
Marvin 61x60x17 53668 8553 13
AmericaMine 61x42x60 19320 6445 18
AsiaMine 112x230x38 772800 97900 15
Andina 184x269x121 4320480 3340898 15

Table 3: Summary of local search performance after running 4 hours

Gershon | Local Search | LP relaxation LP time
(4 hrs)
Marvin 1.0 1.08 1.09 26 min
AmericaMine 1.0 1.15 1.15 19 min
AsiaMine 1.0 1.23 1.24 4h 13 min
Andina 1.0 1.15 Unknown Unknown
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Local Search starting from Gershon solution
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Figure 2: Objective value improvements over time when using local search heuristic

Final Remarks

In this article we have shown how to use a simple local-search based framework in order to tackle large
instances of the RC-PIT problem. Our preliminary computational results are very promising, and suggest
that our approach should be extended to consider more detailed models that incorporate multiple possible
destinations for blocks after extraction, variable cut-off grades, use of stockpiles and other features. The
results obtained can very likely be improved with a more thorough study of different neighborhoods and
by the use of a distributed computing system in which different processors are independently and
simultaneously searching for improvements, and being synchronized when these are found.
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