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Combining the two expressions, we obtain
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Developing the expression
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The proof for the other inequality is similar to the previous proof, so in this case we have that:
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Finally, Proposition 11 implies Qy ⊆ Px̄

In [4] CDOP is formulated differently but equivalent to the presented in this paper so the Fundamental Theorem
also is right in this case.

Conclusions
The Fundamental Theorem is a very known property, but its demonstration is less known. From now on, this paper

is a good source to see its proof. The importance of this theorem is that it lets us reduce the quantity of variables and
restriction of the CDOP problem, solving first the FOP problem, which is faster and whose solution contains the CDOP
solution.
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In this article we propose further properties of the optimal profile for the open pit problem, in the
continuous framework, that is to say the case in which the problem is written in terms of a functional
space. In particular, we prove that the benefit along the border of the optimal pit is zero, unless the
slope or capacity restrictions are active.

Introduction
In this work we address three problems: the final open pit problem (FOP) in which the optimal profile must only satisfy
the slope condition; the capacitated final open pit (CFOP), in which we add a capacity condition, imposing that the
total mass to be extracted is limited by a given upper bound; and the capacitated dynamic open pit problem (CDOP),
in which a nested sequence of capacitated profiles is determined along the periods. In the two first cases, the criteria is
maximizing the total benefit, but in the third case the criteria is given by the discounted value for the planning horizon.
We essentially prove that the value distribution along the lower border of the optimal pit must be zero or negative, when
the slope or capacity constraint are not actives. This result comes from the tools provided by the calculus of variations
and optimal control. Some relevant references on open pit models are [1], [2], [3], [4].

Preliminaries
Let Ω be the region of interest in R2 or R3, supposed to be open and bounded, and Ω its closure. Each pit will be
defined by a (profile) function p : Ω → R, where p(x) represents the depth of the pit at the point x ∈ Ω. We suppose
that these profiles belong to the Banach space of real continuous functions C(Ω), under the supreme norm. We say that
a profile q is deeper than p if p(x) ≤ q(x) ∀x ∈ Ω. We also consider an initial (feasible) profile p0 ∈ C(Ω) and the
two regularity conditions

p(x)− p0(x) ≥ 0, ∀x ∈ Ω

p(x)− p0(x) = 0, ∀x ∈ ∂Ω

Note that we also consider that for z := inf
{
p0(x)|x ∈ Ω

}
and a given z, we have p(x) ∈ Z = [z, z], ∀x ∈ Ω. To

include the slope condition we use Lp(x) ≤ w(x, p(x)), ∀x ∈ Ω, where

Lp(x) := lim sup
x̄→x←x̂

|p(x̄)− p(x̂)|
||x̄− x̂||

∀x ∈ Ω

and w : Ω× Z → [0,∞) is a given function.
We define the effort and the gain functions: e(x, z) ≥ eo > 0, g(x, z) ∈ R, ∀(x, z) ∈ Ω × Z, supposed uniformly
bounded, and

G[p, q] :=

∫

Ω

∫ q(x)

p(x)

g(x, z)dzdx, E[p, q] :=

∫

Ω

∫ q(x)

p(x)

e(x, z)dzdx

G[q] := G[p0, q] E[q] := E[p0, q]

Then we write the problem

(FOP ) maxG[p]

p(x)− p0(x) ≥ 0, ∀x ∈ Ω (1)
p(x)− p0(x) = 0, ∀x ∈ ∂Ω (2)

Lp(x) ≤ w(x, p(x)) ∀x ∈ Ω (3)
p ∈ C(Ω) (4)
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We denote by P the set of feasible profiles of problem (FOP ).
The capacitated final open pit is (for a given constant C)

(CFOP ) maxG[p]

p(x)− p0(x) ≥ 0, ∀x ∈ Ω (5)
p(x)− p0(x) = 0, ∀x ∈ ∂Ω (6)

Lp(x) ≤ w(x, p(x)) ∀x ∈ Ω (7)
E[p] ≤ C (8)
p ∈ C(Ω) (9)

We recall here three relevant results from [1].

Proposition 1 If w is upper semi-continuous, then the set of feasible pits of (FOP ) is compact in C(Ω).

Proposition 2 If g, e ∈ L∞ then E and G are Lipschitz continuous functions.

Proposition 3 If w is upper semi-continuous and g, e ∈ L∞ then
i) Problem (FOP ) posses at least a solution and there exists a pair of unique profiles p

g
, pg such that p

g
≤ p ≤ pg ,

for every p, solution of (FOP ).

ii) For every capacity C > 0, problem (CFOP ) posses at least a solution.

We turn now to the (CDOP ) problem, in which we seek to determine a nested sequence of feasible pits having
a maximum value of the discounted benefit along the horizon planning t ∈ [0, T ]. We denote this sequence by
p(t, ·) ∈ P, ∀t ∈ [0, T ].

Let c ∈ L∞(0, T ), c(t) ≥ 0 ∀t ∈ [0, T ] be the capacity at time t and

C(s, t) =

∫ t

s

c(τ)dτ

the total capacity in the interval [s, t] ⊆ [0, T ].

Moreover, we define a monotonically decreasing function ϕ ∈ C1[0, T ], such that ϕ(0) = 1 and 0 < ϕ(T ) < 1.
Typically we use ϕ(t) = e−δt, for a given δ > 0.

Then, the problem (CDOP ) can be written as:

(CDOP ) maxGD[p] :=

∫

Ω

∫ T

0

ϕ(t)g(x, p(t, x))
∂p

∂t
(t, x)dtdx

p(t, x) = p0(x) ∀x ∈ ∂Ω, t ∈ [0, T ] (10)
Lp(t,·)(x) ≤ w(x, p(t, x)) ∀x ∈ Ω, t ∈ [0, T ] (11)

p0 = p(0, ·) ≤ p(s, ·) ≤ p(t, ·) ∀s, t ∈ [0, t], s ≤ t (12)
∫

Ω

∫ p(t,x)

p(s,x)

e(x, z)dzdx ≤ C(s, t) , ∀s, t ∈ [0, t], s ≤ t (13)

p(t, ·) ∈ C1(Ω) (14)

The objective function can be written in the following form (integration by parts):

GD[p] := ϕ(T )

∫

Ω

∫ p(T,x)

p(0,x)

g(x, z)dzdx+

∫

Ω

∫ T

0

−ϕ′(t)

∫ p(t,x)

p(0,x)

g(x, z)dzdtdx

The next proposition permits to guaranty the continuity of the profiles with respect to the time (see [1]).
Proposition 4 Let p(t, x) be a feasible point of the previous problem. Then, for every s, t ∈ [0, T ] we have

‖p(t, ·)− p(s, ·)‖∞ ≤
[
‖c‖∞
πe0

+ 2w̄

]
(t− s)

1
3

An operational form of the open pit problem
Proposition 5 If p ∈ C1(Ω) then Lp(x) = ||∇p(x)|| ∀x ∈ Ω.

Proof. Let x̄, x̂ ∈ Ω. As p ∈ C1(Ω) the mean value theorem in Rn says that there exists ξx̄,x̂ ∈ co{x̄, x̂} such that

|p(x̄− x̂)| ≤ ||∇p(ξx̄,x̂)||||x̄− x̂||

which is equivalent to
|p(x̄− x̂)|
||x̄− x̂||

≤ ||∇p(ξx̄,x̂)||

By taking lim sup
x̄→x←x̂

and considering lim sup
x̄→x←x̂

∇p(ξx̄,x̂) = ∇p(x), because the function p is continuously differentiable,

and from the continuity of the norm, we have

Lp(x) ≤ ||∇p(x)||

Now, by fixing x̂ = x and x̄ �= x, x̄ → x, then lim sup is equal to ||∇p(x)|| reaching the upper bound and Lp(x) =
||∇p(x)||.

This proposition permits to rewrite the constraint on Lp, when we use the space C1. This assumption exclude several
feasible profiles but the constraint become more operational. In the following section we will work in the functional
space of piecewise differentiable functions instead of C1, in the particular case of a bidimensional mine (i.e., Ω ⊆ R).

Optimality conditions for the open pit problem using calculus of variations
We will use write the Fritz-John conditions for a critical point of the open pit problem. Firstly, we recall some standard
properties of the following generic problem:

(CV ) minF [z] =

∫ b

a

f(x, z(x), ż(x))dx

z(a) = α, z(b) = β

qj(x, z(x), ż(x)) ≤ 0 j = 1, ..,m

x ∈ [a, b]

where the notation ż represents the derivative with respect to the real variable x.

Definition 6 A function y : [a, b] → Rn is piecewise continuous in [a, b] if

• y is bounded in [a, b].

• There exists the left limit of y in (a, b] and the right limit of y in [a, b).

• y is continuous in [a, b], except in a finite subset of [a, b].

Definition 7 A function y : [a, b] → R is piecewise differentiable in [a, b], if there exists a function v, piecewise
continuous in [a, b], such that

y(x) = v(a) +

∫ x

a

v(s)ds ∀x ∈ [a, b]

That is to say, y is piecewise differentiable if it is continuous in [a, b] and its derivative is piecewise continuous in [a, b].

We denote by X = C([a, b],Rn) the functional space containing the functions y : [a, b] → Rn, piecewise differen-
tiable, equipped with the norm: ‖y‖ = ‖y‖∞ + ‖Dy‖∞. We denote by K the feasible set of the problem (CV), over
the space of piecewise differentiable functions. This space is more general than C1 and it add the profiles having a
finite number of vertexes.
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Definition 8 We call z ∈ K a Fritz-John critical point for problem (CV ), if there exists the Lagrange multiplier
τ ∈ R, y = (y1, .., ym) : [a, b] → Rm such that ∀x ∈ [a, b], excepting on discontinuities, we have:

τfz(x, z, ż) + yT (x)qz(x, z, ż) =
d

dx

{
τfż(x, z, ż) + yT (x)qż(x, z, ż)

}
(15)

yT (x)q(x, z, ż) = 0 (16)
(τ, y(x)) �= 0, τ ≥ 0, yj(x) ≥ 0, j = 1, ..,m (17)

Note that if τ > 0 then, if we consider τ = 1, the solution z becomes a Karush-Kuhn-Tucker point. Now, we enounce
two relevant theorems from [5], that will be used in our further analysis.

Theorem 9 Let z̄ ∈ K be an optimal solution of (CV ). Then, z̄ is a Fritz-John critical point.

Theorem 10 Let z ∈ K y f(·, z(·), ż(·)), q(·, z(·), ż(·)) be convex functions in [a, b]. If z is a Fritz-John critical point,
then z is an optimal solution of (CV ).

The precedent theorems can also be founded in [6] , in more general context.
FOP and CFOP Problems
In the sequel we will analyze the behavior of the value density along the boundary of the pit in C1 solution of (FOP )
for a R2 mine. Then we consider the problem:

(FOPo) max
∫ b

a

∫ p(x)

p0(x)

g(x, z)dzdx

p(a) = p0(a), p(b) = p0(b) (18)
p(x) ≥ p0(x) ∀x ∈ [a, b] (19)
|ṗ(x)| ≤ w(x, p(x)) ∀x ∈ (a, b) (20)
p ∈ C([a, b],R) (21)

By identifying this problem with the notation in the previous section, we have:

f(x, p, ṗ) = −
∫ p(x)

p0(x)

g(x, z)dz

q1 = p0(x)− p(x) ≤ 0

q2 = ṗ(x)− w(x, p(x)) ≤ 0

q3 = −ṗ(x)− w(x, p(x)) ≤ 0

By applying Theorem 9 we obtain the following result:

Proposition 11 Let p ∈ K an optimal profile. If

• g ∈ C

• w(x, z) is derivable with respect to z

• there exists ā, b̄ such that a < ā < b̄ < b and |ṗ(x)| < w(x, p(x)) ∀x ∈ (ā, b̄),

then for every x ∈ (ā, b̄) the following statements hold:

(i) g(x, p(x)) ≤ 0

(ii) (p(x)− p0(x))g(x, p(x)) = 0

Proof. From the precedent theorem, the optimal solution p is a Fritz-John critical point for (FOPo).
As g is continuous, by the fundamental theorem of calculus we have that

fp(x, p, ṗ) = −g(x, p(x))

Moreover,
(q1)p = −1 (q2)p = (q3)p = −wp(x, p(x))

On the other hand, as f and g1 doesn’t depend on ṗ, we have that

fṗ = (q1)ṗ = 0, (q2)ṗ = 1, (q3)ṗ = −1

As p is a Fritz-John point, there exist τ ∈ R and y = (y1, y2, y3) : [a, b] → R3, piecewise differentiable that such:

−τg(x, p(x))− y1(x)− wp(x, p(x))(y2(x) + y3(x)) =
d

dx
{y2(x)− y3(x)} (22)

y1(x)(p0(x)− p(x)) = 0 (23)
y2(x)(ṗ(x)− w(x, p(x))) = 0 (24)

y3(x)(−ṗ(x)− w(x, p(x))) = 0 (25)
(τ, y(x)) �= 0 τ ≥ 0 (26)

yj(x) ≥ 0 j = 1, .., 3 (27)

Now we consider the fact that |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[. From slack conditions, we have ∀x ∈]ā, b̄[, except for
discontinuities:

y2(x) = y3(x) = 0

which implies
dy2(x)

dx
=

dy3(x)

dx
= 0.

Replacing in (22) we obtain τg(x, p(x)) = −y1(x).

Note that τ = 0 implies y1(x) = 0 and as we already know, y2(x) = y3(x) = 0, then (τ, y(x)) = 0. This is a
contradiction. Hence, τ �= 0 and:

g(x, p(x)) = −y1(x)

τ

But τ, y1 ≥ 0, then we obtain g(x, p(x)) ≤ 0.

On the other hand, by replacing y1 in (23) we have:

−τg(x, p(x))(p0(x)− p(x)) = 0,

which implies
g(x, p(x))(p0(x)− p(x)) = 0

Then (i) and (ii) hold ∀x ∈ (ā, b̄), except for discontinuities. By continuity of g, p and p0 this can be extended to the
whole interval.

The derivability of w could seems to be a restrictive hypothesis but, in real cases, this is often considered as a
constant.

Proposition 11 essentially says that, if the optimal profile in a given point doesn’t hit the maximal slope, then the
benefit in that point must be zero or negative.

The previous analysis is based on continuity of the benefit function g, with respect to the second variable, that is,
the vertical coordinate of the mine. This is a strong assumption, because in many real mines the distribution of the
richness in the site is quite variable and sometimes with very big jumps in value. But, from a mathematical point of
view this assumption permits to derive important properties.
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Theorem 10 Let z ∈ K y f(·, z(·), ż(·)), q(·, z(·), ż(·)) be convex functions in [a, b]. If z is a Fritz-John critical point,
then z is an optimal solution of (CV ).

The precedent theorems can also be founded in [6] , in more general context.
FOP and CFOP Problems
In the sequel we will analyze the behavior of the value density along the boundary of the pit in C1 solution of (FOP )
for a R2 mine. Then we consider the problem:

(FOPo) max
∫ b

a

∫ p(x)

p0(x)

g(x, z)dzdx

p(a) = p0(a), p(b) = p0(b) (18)
p(x) ≥ p0(x) ∀x ∈ [a, b] (19)
|ṗ(x)| ≤ w(x, p(x)) ∀x ∈ (a, b) (20)
p ∈ C([a, b],R) (21)

By identifying this problem with the notation in the previous section, we have:

f(x, p, ṗ) = −
∫ p(x)

p0(x)

g(x, z)dz

q1 = p0(x)− p(x) ≤ 0

q2 = ṗ(x)− w(x, p(x)) ≤ 0

q3 = −ṗ(x)− w(x, p(x)) ≤ 0

By applying Theorem 9 we obtain the following result:

Proposition 11 Let p ∈ K an optimal profile. If

• g ∈ C

• w(x, z) is derivable with respect to z

• there exists ā, b̄ such that a < ā < b̄ < b and |ṗ(x)| < w(x, p(x)) ∀x ∈ (ā, b̄),

then for every x ∈ (ā, b̄) the following statements hold:

(i) g(x, p(x)) ≤ 0

(ii) (p(x)− p0(x))g(x, p(x)) = 0

Proof. From the precedent theorem, the optimal solution p is a Fritz-John critical point for (FOPo).
As g is continuous, by the fundamental theorem of calculus we have that

fp(x, p, ṗ) = −g(x, p(x))

Moreover,
(q1)p = −1 (q2)p = (q3)p = −wp(x, p(x))

On the other hand, as f and g1 doesn’t depend on ṗ, we have that

fṗ = (q1)ṗ = 0, (q2)ṗ = 1, (q3)ṗ = −1

As p is a Fritz-John point, there exist τ ∈ R and y = (y1, y2, y3) : [a, b] → R3, piecewise differentiable that such:

−τg(x, p(x))− y1(x)− wp(x, p(x))(y2(x) + y3(x)) =
d

dx
{y2(x)− y3(x)} (22)

y1(x)(p0(x)− p(x)) = 0 (23)
y2(x)(ṗ(x)− w(x, p(x))) = 0 (24)

y3(x)(−ṗ(x)− w(x, p(x))) = 0 (25)
(τ, y(x)) �= 0 τ ≥ 0 (26)

yj(x) ≥ 0 j = 1, .., 3 (27)

Now we consider the fact that |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[. From slack conditions, we have ∀x ∈]ā, b̄[, except for
discontinuities:

y2(x) = y3(x) = 0

which implies
dy2(x)

dx
=

dy3(x)

dx
= 0.

Replacing in (22) we obtain τg(x, p(x)) = −y1(x).

Note that τ = 0 implies y1(x) = 0 and as we already know, y2(x) = y3(x) = 0, then (τ, y(x)) = 0. This is a
contradiction. Hence, τ �= 0 and:

g(x, p(x)) = −y1(x)

τ

But τ, y1 ≥ 0, then we obtain g(x, p(x)) ≤ 0.

On the other hand, by replacing y1 in (23) we have:

−τg(x, p(x))(p0(x)− p(x)) = 0,

which implies
g(x, p(x))(p0(x)− p(x)) = 0

Then (i) and (ii) hold ∀x ∈ (ā, b̄), except for discontinuities. By continuity of g, p and p0 this can be extended to the
whole interval.

The derivability of w could seems to be a restrictive hypothesis but, in real cases, this is often considered as a
constant.

Proposition 11 essentially says that, if the optimal profile in a given point doesn’t hit the maximal slope, then the
benefit in that point must be zero or negative.

The previous analysis is based on continuity of the benefit function g, with respect to the second variable, that is,
the vertical coordinate of the mine. This is a strong assumption, because in many real mines the distribution of the
richness in the site is quite variable and sometimes with very big jumps in value. But, from a mathematical point of
view this assumption permits to derive important properties.
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Let us turn now to the (CFOP ) problem. The only change is the additional constraint
∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdx ≤ E

where e(x, z) ≥ 0 is the effort function (capacity). So, we define

q4 =

∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdx− E

and the Fritz-John points are given by:

−τg(x, p(x))− y1(x)− wp(x, p(x))(y2(x) + y3(x)) + y4(x)

∫ b

a

e(x, p(x))dx =
d

dx
{y2(x)− y3(x)} (∗∗)

y1(x)(p0(x)− p(x)) = 0

y2(x)(ṗ(x)− w(x, p(x))) = 0

y3(x)(−ṗ(x)− w(x, p(x))) = 0

y4(x)

(∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz − E

)
= 0

(τ, y(x)) �= 0 τ ≥ 0

yj(x) ≥ 0, j = 1, .., 4

Then, we can propose the following result for the (CFOP ) case.

Proposition 12 Let p ∈ K be an optimal profile for (CFOP ). If

• g ∈ C,

• w(x, z) is derivable with respect to z

• there exist ā, b̄, such that a < ā < b̄ < b and |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[,

then ∀x ∈]ā, b̄[:

(i)

(
E −

∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz

)
g(x, p(x)) ≤ 0

(ii) (p(x)− p0(x))g(x, p(x))

(∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz − E

)
= 0

This result can be easily interpreted: if the optimal profile doesn’t use the maximal slope, one possibility is that the
gain function is negative in the zone or because the maximal capacity is completely fulfilled.
CDOP Problem
In the dynamic problem introduced in [1] the authors consider a continuous time interval [0, T ] and, for every time t
they seek for a feasible profile for (FOP ) in a decreasing sequence along the time. To write this new problem they
introduce p(t, x), which represents the depth in the point x at time t, which means that p(t, ·) is a feasible profile for
(FOP ).

As we showed before, this problem can be formulated in the following form.

(CDOP ) maxG[p] := ϕ(T )

∫ b

a

∫ p(T,x)

p(0,x)

g(x, z)dzdx+

∫ b

a

∫ T

0

−ϕ′(t)

∫ p(t,x)

p(0,x)

g(x, z)dzdtdx

p(t, a) = p0(a), p(t, b) = p0(b) ∀t ∈ [0, T ] (28)
|ṗ(t, x)| ≤ w(x, p(t, x)) ∀x ∈ (a, b) ∀t ∈ [0, T ] (29)
p0 = p(0, ·) ≤ p(s, ·) ≤ p(t, ·), ∀ 0 ≤ s ≤ t ≤ T (30)

∫ b

a

∫ p(t,x)

p(s,x)

e(x, z)dzdx ≤
∫ t

s

c(τ)dτ, ∀ 0 ≤ s ≤ t ≤ T (31)

p(t, ·) ∈ C([a, b],R) (32)

Proposition 13 Let pN (T, ·) ∈ K the profile at time T (discrete time in N intervals). If

• g ∈ C

• w(x, z) is derivable with respect to z

• existen ā, b̄, such that a < ā < b̄ < b y |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[

then ∀x ∈]ā, b̄[:

(i)

(∫ T

tN−1

c(τ)dτ −
∫ b

a

∫ pN (T,x)

pN (tN−1,x)

e(x, z)dzdx

)
g(x, pN (T, x)) ≤ 0

(ii) (pN (T, x)− pN (tN−1,x))

(∫ T

tN−1

c(τ)dτ −
∫ b

a

∫ pN (T,x)

pN (tN−1,x)

e(x, z)dzdx

)
g(x, pN (T, x)) = 0

Now we replicate the previous results, for the special case of continuous space and time. From now, p(t, x) t ∈
[0, T ], x ∈ [a, b] represents a solution of (CDOP ), and we define the family of problems, ∀ε ∈]0, T [

(Pε) max
∫ b

a

∫ p(x)

p(T−ε,x)

ϕ(T )g(x, z)dzdx

p(a) = p(T − ε, a), p(b) = p(T − ε, b) (33)
|ṗ(x)| ≤ w(x, p(x)) ∀x ∈ (a, b) (34)
p(T − ε, x) ≤ p(x) ∀x ∈ [a, b] (35)

∫ b

a

∫ p(x)

p(T−ε,x)

e(x, z)dzdx ≤
∫ T

T−ε

c(τ)dτ (36)

p ∈ C([a, b],R) (37)

This problem have the form of (CFOP ), with initial profile p(T − ε) and capacity
∫ T

T−ε

c(τ)dτ . The solution of this

problem is denoted by pε.

Proposition 14 Let p(T, ·) be the profile, at time T , of the solution of (CDOP ). If there exists a sequence εk ∈]0, T [,
εk

k→∞−−−−→ 0 such that (Pεk) posses a solution pεk , then

pεk(x)
k→∞−−−−→ p(T, x) a.e.

Proposition 15 Let p(T, ·) ∈ K be the profile at time T for Problem (CDOP ). Also, let us suppose that g ∈ C and
w(x, z) is derivable with respect to z. If there exists a sequence {εk} ⊂ [0, T ], converging to zero, such that (Pεk)
possess solution and there exists k̄ ∈ N, ā, b̄, a < ā < b̄ < b such that ∀k ≥ k̄:
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Let us turn now to the (CFOP ) problem. The only change is the additional constraint
∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdx ≤ E

where e(x, z) ≥ 0 is the effort function (capacity). So, we define

q4 =

∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdx− E

and the Fritz-John points are given by:

−τg(x, p(x))− y1(x)− wp(x, p(x))(y2(x) + y3(x)) + y4(x)

∫ b

a

e(x, p(x))dx =
d

dx
{y2(x)− y3(x)} (∗∗)

y1(x)(p0(x)− p(x)) = 0

y2(x)(ṗ(x)− w(x, p(x))) = 0

y3(x)(−ṗ(x)− w(x, p(x))) = 0

y4(x)

(∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz − E

)
= 0

(τ, y(x)) �= 0 τ ≥ 0

yj(x) ≥ 0, j = 1, .., 4

Then, we can propose the following result for the (CFOP ) case.

Proposition 12 Let p ∈ K be an optimal profile for (CFOP ). If

• g ∈ C,

• w(x, z) is derivable with respect to z

• there exist ā, b̄, such that a < ā < b̄ < b and |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[,

then ∀x ∈]ā, b̄[:

(i)

(
E −

∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz

)
g(x, p(x)) ≤ 0

(ii) (p(x)− p0(x))g(x, p(x))

(∫ b

a

∫ p(x)

p0(x)

e(x, z)dzdz − E

)
= 0

This result can be easily interpreted: if the optimal profile doesn’t use the maximal slope, one possibility is that the
gain function is negative in the zone or because the maximal capacity is completely fulfilled.
CDOP Problem
In the dynamic problem introduced in [1] the authors consider a continuous time interval [0, T ] and, for every time t
they seek for a feasible profile for (FOP ) in a decreasing sequence along the time. To write this new problem they
introduce p(t, x), which represents the depth in the point x at time t, which means that p(t, ·) is a feasible profile for
(FOP ).

As we showed before, this problem can be formulated in the following form.

(CDOP ) maxG[p] := ϕ(T )

∫ b

a

∫ p(T,x)

p(0,x)

g(x, z)dzdx+

∫ b

a

∫ T

0

−ϕ′(t)

∫ p(t,x)

p(0,x)

g(x, z)dzdtdx

p(t, a) = p0(a), p(t, b) = p0(b) ∀t ∈ [0, T ] (28)
|ṗ(t, x)| ≤ w(x, p(t, x)) ∀x ∈ (a, b) ∀t ∈ [0, T ] (29)
p0 = p(0, ·) ≤ p(s, ·) ≤ p(t, ·), ∀ 0 ≤ s ≤ t ≤ T (30)

∫ b

a

∫ p(t,x)

p(s,x)

e(x, z)dzdx ≤
∫ t

s

c(τ)dτ, ∀ 0 ≤ s ≤ t ≤ T (31)

p(t, ·) ∈ C([a, b],R) (32)

Proposition 13 Let pN (T, ·) ∈ K the profile at time T (discrete time in N intervals). If

• g ∈ C

• w(x, z) is derivable with respect to z

• existen ā, b̄, such that a < ā < b̄ < b y |ṗ(x)| < w(x, p(x)) ∀x ∈]ā, b̄[

then ∀x ∈]ā, b̄[:

(i)

(∫ T

tN−1

c(τ)dτ −
∫ b

a

∫ pN (T,x)

pN (tN−1,x)

e(x, z)dzdx

)
g(x, pN (T, x)) ≤ 0

(ii) (pN (T, x)− pN (tN−1,x))

(∫ T

tN−1

c(τ)dτ −
∫ b

a

∫ pN (T,x)

pN (tN−1,x)

e(x, z)dzdx

)
g(x, pN (T, x)) = 0

Now we replicate the previous results, for the special case of continuous space and time. From now, p(t, x) t ∈
[0, T ], x ∈ [a, b] represents a solution of (CDOP ), and we define the family of problems, ∀ε ∈]0, T [

(Pε) max
∫ b

a

∫ p(x)

p(T−ε,x)

ϕ(T )g(x, z)dzdx

p(a) = p(T − ε, a), p(b) = p(T − ε, b) (33)
|ṗ(x)| ≤ w(x, p(x)) ∀x ∈ (a, b) (34)
p(T − ε, x) ≤ p(x) ∀x ∈ [a, b] (35)

∫ b

a

∫ p(x)

p(T−ε,x)

e(x, z)dzdx ≤
∫ T

T−ε

c(τ)dτ (36)

p ∈ C([a, b],R) (37)

This problem have the form of (CFOP ), with initial profile p(T − ε) and capacity
∫ T

T−ε

c(τ)dτ . The solution of this

problem is denoted by pε.

Proposition 14 Let p(T, ·) be the profile, at time T , of the solution of (CDOP ). If there exists a sequence εk ∈]0, T [,
εk

k→∞−−−−→ 0 such that (Pεk) posses a solution pεk , then

pεk(x)
k→∞−−−−→ p(T, x) a.e.

Proposition 15 Let p(T, ·) ∈ K be the profile at time T for Problem (CDOP ). Also, let us suppose that g ∈ C and
w(x, z) is derivable with respect to z. If there exists a sequence {εk} ⊂ [0, T ], converging to zero, such that (Pεk)
possess solution and there exists k̄ ∈ N, ā, b̄, a < ā < b̄ < b such that ∀k ≥ k̄:
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• |ṗεk | < w(x, pεk(x)) ∀x ∈]ā, b̄[

•
∫ b

a

∫ pεk
(x)

p(T−εk,x)

e(x, z)dzdx <

∫ T

T−εk

c(τ)dτ

then ∀x ∈]ā, b̄[
g(x, p(T, x)) ≤ 0 a.e.

Moreover, if p(T − εk, x) < pεk(x) then g(x, p(T, x)) = 0 a.e.

This continuous version can be formulated as a optimality control problem whit state constraints where prepositions
11 and 12 still true. The content for this purpose is presented in [7], [8].

Conclusion
The problems (Pε) can be interpreted as a maximization of the benefit at time T − ε, without consider the past,

under a given capacity
∫ T

T−ε

c(τ)dτ . We have essentially prove that under non active capacity or slope constraint,

the lower border of the pit takes the value zero or negative. This could provide good suggestions for pit optimization
algorithms, by seeking for final or sequenced pits satisfying this condition. This work is a beginning to generalize
previous proposition to R3 mine.
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Using a massive data base from a mined out area on a gold mine,  indirect and direct localized 
conditioning  of  recoverable resource techniques have been analyzed using typical feasibility 
study or new mine drilling data configurations that were drawn from this data base. The results 
were then compared with the historical corresponding grade control and production data in order 
to determine the efficiencies of the approaches and the validity of the recoverable mineral resource 
estimates for mine planning and financial forecasts.  
 
The study shows that the localized and somewhat more straight forward approach if applied 
efficiently can provide an equally useful tool for computing recoverable resources for feasibility 
mine planning as compared to the indirect approach as presently in use. 

 
Introduction 
For new mining projects or for medium to long-term areas of existing mines, drilling data are invariably on a 
relatively large grid. Direct estimates for Selective Mining Units (SMU’s) and also of much larger block units will 
then be smoothed due to the information effect and the high error variance.   
 
The difficulty is that ultimately, during mining, selection will be done on the basis of selective mining units on the 
final closer spaced data grid, which is then available, i.e. the actual selection will be more efficient with fewer 
misclassifications.  However, this ultimate position is unknown at the project feasibility stage and therefore has to be 
estimated. This is because any cash flow calculations made on the basis of the smoothed estimates will naturally 
misrepresent the economic value of the project, i.e.  the average grade above cut-off will be underestimated and the 
tonnage overestimated for cut-offs below the average grade of the ore body.  Similarly, unsmoothed estimates will 
be inefficient and will give even worse results, particularly in local areas of short term planning or mining. 
 
The paper investigates the relative efficiencies of different parametric techniques for computing recoverable 
resource estimates, which are usually required for feasibility mine planning.  Indirect and direct localized 
conditioning distributions of selective mining units are used.  
 
The general indirect approach to the problem above is to derive the unknown SMU distribution from the observed 
distribution of relative large blocks. The general indirect approach to the problem above is to derive the unknown 
SMU distribution from the observed distribution of relatively large kriged blocks (panels).  The alternatives for the 
indirect approach as used in previous publications are the uniform conditioning [1,2], Multivariate Uniform 
Conditioning [3] and the assumed lognormal distribution of SMU’s within large planning blocks (“INDLN” ).[4,5]  
These techniques are indirect in the sense that the SMU distributions are inferred indirectly from initial estimated 
large kriged blocks/panels. 
 
In order to provide the recoverable resource estimates for the ore body, the INDLN as proposed by Assibey-Bonsu 
and Krige [4] and the Localized Conditioning technique (LCT), as proposed by Abzalov [6], were utilized.  Abzalov 
proposed using the grade-tonnage functions from the large panel indirect estimates (derived from indirect approach) 
and then decomposing the panel-specific grade-tonnage data into a suite of individual SMU-sized units within 
respective panels. Abzalov suggested that the individual parcel grades of the SMU derived from the decomposed 
LCT approach be assigned to the SMU size blocks within the respective panels.  
 
Using a massive data base from a mined out area on a gold mine,  indirect (INDLN)  and direct localized (LCT)  
conditioning  of  recoverable resource techniques have been analyzed using typical feasibility study or new mine 




