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The mill cut-off grade was optimized as 47% Fe and life of mine was determined as 9 years. The value
of mill cut-off grade was higher than our optimized value and the value of life of mine was lower. NPV
value calculated in simultaneous method was 13530 Million Rs which is 19% higher than the NPV value
obtained in conventional method (10938 Million Rs). It is found that a better NPV can be achieved by
simultaneous optimization method.

4 Conclusion

This paper has presented a unified population based heuristic method for simultaneous optimization
of major mine planning parameters. Some of the major mine planning parameters like cut-off grade,
life of mine, extraction rate, unit capital cost, unit operating cost are assumed in conventional mine
planning methods as the major mine planning parameters interact in a circular manner. But out of
them the economical parameters like capital and operating cost are very uncertain in nature and merely
predictable. In conventional mine planning method, any wrong assumption of these parameter results
in improper calculation of NPV value, hence the wrong economic evaluation of mining project. We have
proposed a methodology which can optimize all the planning parameters assuming only one economical
parameter, ore price. The NPV of the mine was calculated using both conventional method and proposed
simultaneous optimization method. It has been observed that the proposed method is more suitable for
evaluation of any mining project than the conventional method.
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In open pit mine planning, there are three well known models concerning how to find a region of
maximal economic value under geotechnical stability constraints. These models belong to the area
of integer programming and we respectively call them as Final Open Pit (FOP), Capacitated Open Pit
(COP) and Capacitated Dynamic Open Pit (CDOP). In this work we formalize some ideas about these
models and their connecting properties and, as a main result, we prove the well known conjecture
that a pit which is solution of (CDOP) is contained in the biggest pit from the solution of (FOP).

Introduction
Three models are usually considered in this area, such as is pointed out in [1], [2] and [3]. We will describe the main
properties of this models aiming to provide a new proof of the well known fact that the sequenced open pit is contained
in the final open pit. The case with ore blending constraints or lower bounds in the capacity are not considered in
this work and certainly our main result could change in those cases. To formalize this approach, we first recall the
mathematical definitions of those problems.
Let us suppose that we have a set of blocks N which the benefit is known, then for every i ∈ N we call bi that value,
and define the variables:

xi =

{
1 if block i is chosen for extraction
0 if not

We also consider a set of arcs A representing the precedences between the bloks. The optimization model can be
expressed by

(FOP ) max
∑
i∈N

bixi

xj − xi ≥ 0 ∀(i, j) ∈ A (1)
xi ∈ {0, 1} ∀i ∈ N (2)

If we consider a maximal capacity C of extraction in terms of total mass, the model can be modified as

(CFOP ) max
∑
i∈N

bixi

xj − xi ≥ 0 ∀(i, j) ∈ A (3)∑
i∈N

pixi ≤ C (4)

xi ∈ {0, 1} ∀i ∈ N (5)

pi being the density of the block. In this case, if the total capacity is expressed in terms of number of blocks, then we
simply use pi = 1, for all i ∈ N and C is an integer number.
For the dynamic problem, we define the variables:

xt
i =

{
1 if block i is extracted at time t
0 if not

In this case, we consider discrete time t = 1, . . . , T and a constant α ∈]0, 1[ representing the discount factor. We also
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know the capacity at every period, denoted as Ct. The dynamic model can be written as:

(CDOP ) max
T∑

t=1

∑
i∈N

bi
(1 + α)t−1

xt
i

T∑
t=1

xt
i ≤ 1 ∀i ∈ N (6)

t∑
l=1

xl
j − xt

i ≥ 0 ∀(i, j) ∈ A, t = 1, ..., T (7)

∑
i∈N

pix
t
i ≤ Ct t = 1, ..., T (8)

xt
i ∈ {0, 1} ∀i ∈ N, t = 1, ..., T (9)

In [3] the constraint (8) has a lower bound, which in this case is 0.

Definition 1 For every feasible point x we will denote Px = {i ∈ N |xi = 1} the pit associated to x. If x is a solution
of (FOP ), we call Px a final (optimal) pit.

Definition 2 For every y, feasible point of (CDOP ), we denote Qy = {i ∈ N | ∃t ∈ {1, ..., T} yti = 1} the associ-
ated pit to y and Qt

y = {i ∈ N |yti = 1} is known as a phase. Obviously,

Qy =

T⋃
t=1

Qt
y

The solution of (FOP ) is in general not unique, but we consider the solution having maximal cardinality. See, as
example, the case:

0 0 0 0 0

0 0 20 0 0

0 −5 10 −5 0

−5 10 10 10 −5

0 0 0 0 0

0 0 20 0 0

0 −5 10 −5 0

−5 10 10 10 −5

Figure 1: Two solutions of the same (FOP) problem

The right pit has the same value as the left pit, however the latter contains more blocks. The conjecture is:

Conjecture 3 Let x̄ be the solution of (FOP ) such that |Px̄| is maximal among all optimal solutions of (FOP) and let
y be any optimal solution of (CDOP ), then:

Qy ⊆ Px̄

Later, we will prove that Px̄ contains all the pits having maximal value. Moreover, it is clear that if a final pit contains
all the pits having maximal value then has maximal cardinality, so our conjecture can be presented as follows.

Conjecture 4 Let x̄ a solution of (FOP ) such that, every optimal solution is contained in Px̄, and let y be any optimal
solution of (CDOP ), then:

Qy ⊆ Px̄

Both conjectures are equivalent so we talk about the conjecture. The existence of this optimal pit having maximal
cardinality comes from the fact that the feasible set is finite and nonempty (the trivial solution is always feasible).

Preliminary results
Firstly, we show some preliminary results to prove the conjecture.

Proposition 5 If x1 and x2 are feasible points of (FOP ) then there exists a feasible point z such that:

Px1 ∪ Px2 = Pz

Proof: It is clear that

Px1 ∪ Px2 =
{
i ∈ N|x1

i = 1
}
∪
{
i ∈ N|x2

i = 1
}
=

{
i ∈ N|x1

i = 1 ∨ x2
i = 1

}

Then, we have to prove that there exists a feasible point z such that:
{
i ∈ N|x1

i = 1 ∨ x2
i = 1

}
= {i ∈ N|zi = 1}

By defining the binary variable z such that zi = 1 ⇐⇒ x1
i = 1 ∨ x2

i = 1 we clearly have the equality of the sets. To
verify (1), we analyze two cases

a) zi = 0. In this case zj − zi = zj ≥ 0 ∀(i, j) ∈ A and the constraint is satisfied.

b) zi = 1. By definition of z, this means that x1
i = 1 ∨ x2

i = 1. Given that these two vectors are feasible, from the
precedence relations we have:

x1
j = 1 ∨ x2

j = 1 ∀(i, j) ∈ A

This implies zj = 1 ∀(i, j) ∈ A, then zj − zi ≥ 0 ∀(i, j) ∈ A.

Proposition 6 If x1 and x2 are feasible for (FOP ) then there exists z, feasible point for (FOP ), such that:

Px1 ∩ Px2 = Pz

Proof. Following the same ideas of the previous proposition, we have

Px1 ∩ Px2 =
{
i ∈ N |x1

i = 1 ∧ x2
i = 1

}

Then, if we define the binary variable z such that zi = 1 ⇐⇒ x1
i = 1 ∧ x2

i = 1 we have the equality of the two sets.
The relevant case to prove (1) is zi = 1, because if zi = 0 the constraint is trivially satisfied.
The expression zi = 1 implies x1

i = 1 and x2
i = 1, then given that x1 and x2 are feasible for (FOP ), we have

x1
j = x2

j = 1 ∀(i, j) ∈ A.
So zj = 1 ∀(i, j) ∈ A, then z satisfies Px1 ∩ Px2 = Pz and is feasible for (FOP ).

Remark 7 From now, given a feasible point x for (FOP ), we will use the following expression for the objective
function: ∑

i∈N

bixi =
∑

i∈N :xi=1

bi =
∑
i∈Px

bi

Proposition 8 If x is any solution of (FOP ), and x̄ a solution of (FOP) which |Px̄| is the biggest among all solutions
of (FOP) then Px ⊆ Px̄

Proof. From Proposition 5, Px ∪ Px̄ is well defined in a feasible point of (FOP ), then
∑
i∈Px̄

bi ≥
∑

i∈Px∪Px̄

bi =
∑
i∈Px̄

bi +
∑

i∈Px\Px̄

bi (10)

The first inequality comes from the optimality of x̄ and the equality comes from the fact that Px̄ and Px \ Px̄ is a
partition of Px ∪ Px̄. Then we have: ∑

i∈Px\Px̄

bi ≤ 0 (11)
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know the capacity at every period, denoted as Ct. The dynamic model can be written as:
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Conjecture 3 Let x̄ be the solution of (FOP ) such that |Px̄| is maximal among all optimal solutions of (FOP) and let
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Conjecture 4 Let x̄ a solution of (FOP ) such that, every optimal solution is contained in Px̄, and let y be any optimal
solution of (CDOP ), then:
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Both conjectures are equivalent so we talk about the conjecture. The existence of this optimal pit having maximal
cardinality comes from the fact that the feasible set is finite and nonempty (the trivial solution is always feasible).

Preliminary results
Firstly, we show some preliminary results to prove the conjecture.

Proposition 5 If x1 and x2 are feasible points of (FOP ) then there exists a feasible point z such that:
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Proof: It is clear that
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{
i ∈ N|x1

i = 1
}
∪
{
i ∈ N|x2

i = 1
}
=

{
i ∈ N|x1

i = 1 ∨ x2
i = 1

}

Then, we have to prove that there exists a feasible point z such that:
{
i ∈ N|x1

i = 1 ∨ x2
i = 1

}
= {i ∈ N|zi = 1}

By defining the binary variable z such that zi = 1 ⇐⇒ x1
i = 1 ∨ x2

i = 1 we clearly have the equality of the sets. To
verify (1), we analyze two cases

a) zi = 0. In this case zj − zi = zj ≥ 0 ∀(i, j) ∈ A and the constraint is satisfied.

b) zi = 1. By definition of z, this means that x1
i = 1 ∨ x2

i = 1. Given that these two vectors are feasible, from the
precedence relations we have:
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j = 1 ∀(i, j) ∈ A

This implies zj = 1 ∀(i, j) ∈ A, then zj − zi ≥ 0 ∀(i, j) ∈ A.
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}

Then, if we define the binary variable z such that zi = 1 ⇐⇒ x1
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i = 1, then given that x1 and x2 are feasible for (FOP ), we have
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Remark 7 From now, given a feasible point x for (FOP ), we will use the following expression for the objective
function: ∑

i∈N

bixi =
∑

i∈N :xi=1

bi =
∑
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Proposition 8 If x is any solution of (FOP ), and x̄ a solution of (FOP) which |Px̄| is the biggest among all solutions
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partition of Px ∪ Px̄. Then we have: ∑

i∈Px\Px̄

bi ≤ 0 (11)
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Similarly, ∑
i∈Px

bi =
∑

i∈Px∩Px̄

bi +
∑

i∈Px\Px̄

bi ≤
∑

i∈Px∩Px̄

bi + 0

Now, as x and x̄ are feasible points for (FOP ), from Proposition 6 there exists a feasible point for (FOP ) such that
the associated final pit is Px∩Px̄, then the last inequality must be an equality (because x is optimal for (FOP )). Then

∑
i∈Px\Px̄

bi = 0

By replacing in (10) we have ∑
i∈Px∪Px̄

bi =
∑
i∈Px̄

bi

Then, from the existence of z, feasible for (FOP ) such that Px ∪ Px̄ = Pz , then it is also an optimum.
From the definition of x̄ as the solution of (FOP ) such that Px̄ has maximal cardinality then

|Px ∪ Px̄| ≤ |Px̄|

But Px̄ ⊆ Px ∪ Px̄, then the equality holds. So

|Px̄|+ |Px \ Px̄| = |Px ∪ Px̄| = |Px̄| =⇒ |Px \ Px̄| = 0

which means Px \ Px̄ = ∅ and Px ⊆ Px̄.

Corollary 9 There is only one solution of (FOP) whose associated pit has the biggest cardinal among all the solutions
of (FOP)

Proof. The existence is because of the feasibility of the problem. Let x1 and x2 be two optimum points of (FOP)
whose associated pit has the biggest cardinal. Because of preposition 2.3 we have that

Px1 ⊆ Px2 ∧ Px2 ⊆ Px1

So Px1 = Px2 concluding that x1 = x2.

Main results
In the sequel, we refer to the unique solution of (FOP) having biggest cardinal among all the solutions of (FOP).

Proposition 10 Given a feasible point y for (CDOP ), there exists z, feasible point for (FOP ), such that

Qy = Pz

Proof. Let y = {yti} be a feasible point of (CDOP ). We define

zi =

T∑
t=1

yti

We will prove that z is feasible for (FOP ) and it fulfill the equality of the corresponding sets of blocks. Firstly, from
feasibility of y it is obvious that zi ∈ {0, 1}, because of (6) and (9).
To prove zj − zi ≥ 0 ∀(i, j) ∈ A we only consider the case zi = 1, the other one being trivial. It is clear that there
exists a unique t = 1, . . . , T such that yt̂i = 1. From (7) we have, for all (i, j) ∈ A

1 = yt̂i ≤
t̂∑

l=1

ylj ≤
T∑
l=1

ylj = zj

which means that zj = 1 ∀(i, j) ∈ A and then z is feasible for (FOP ).

Furthermore, it is easy to see that

zi = 1 ⇐⇒
T∑

t=1

yti = 1 ⇐⇒ ∃t ∈ {1, ..., T} yti = 1

where the last equivalence is due to feasibility of y for (CDOP). This implies Qy = Pz .

We prove below some new properties of the optimal pits.

Proposition 11 Let ȳ be any solution of (CDOP) and x̄ be the solution whit maximal cardinality of (FOP). Then
∑

i∈Qȳ\Px̄

bi = 0 =⇒ Qȳ ⊆ Px̄

Proof. From Proposition 10 there exist z̄ such thatQȳ = Pz̄ and from Proposition 5, Pz̄ ∪Px̄ contains a feasible point
for (FOP ). Furthermore ∑

i∈Pz̄∪Px̄

bi =
∑
i∈Px̄

bi +
∑

i∈Pz̄\Px̄

bi =
∑
i∈Px̄

bi,

then the vector determining Pz̄∪Px̄ is a solution of (FOP ). From Proposition 8 we have Pz̄∪Px̄ ⊆ Px̄ which implies
Pz̄ ⊆ Px̄.

Later, we are going to prove this last preposition is necessary so the conjecture is right.

Proposition 12 Let y be a feasible point of (CDOP ), x a feasible point of (FOP ) and t̄ ∈ {1, . . . , T − 1}. Then
there exists w, feasible point for (CDOP ) such that

(i) Qt
w = Qt

y for t ∈ {1, ..., t̄} , t̄ ≥ 1

(ii) Qt
w = Qt

y ∩ Px for t ∈ {t̄+ 1, ...T}

And when t̄ = 0 there exist w feasible point for (CDOP) such that

Qt
w = Qt

y ∩ Px for t ∈ {1, ...T}

Proof. For t̄ ≥ 1 let us define w by

wt
i =




yti si t ∈ {1, ..., t̄} , i ∈ N

1 si (yti = 1 ∧ xi = 1), t ∈ {t̄+ 1, ..., T} , i ∈ N

0 si (yti = 0 ∨ xi = 0), t ∈ {t̄+ 1, ..., T} , i ∈ N

Then it is clear that
Qt

w = Qt
y for t ∈ {1, ..., t̄} , t̄ ≥ 1

Qt
w = Qt

y ∩ Px for t ∈ {t̄+ 1, ...T} ,
We will prove that this w is a feasible point for (CDOP ). Note that by how we define w, wi ∈ {0, 1} and this can be
written as wt

i = ytixi for t ∈ {t̄+ 1, ...T}, which implies that wt
i ≤ yti ∀t ∈ {1, ..., T}, then

T∑
t=1

wt
i ≤

T∑
t=1

yti ≤ 1 ∀i ∈ N

∑
i∈N

piw
t
i ≤

∑
i∈N

piy
t
i ≤ Ct ∀t ∈ {1, ...T}

This prove (6),(7) and (9). For the precedence constraints we have that y = w when t ∈ {1, ..., t̄}, then the constraint
is trivially satisfied. The interesting case to analyze is t ∈ {t̄+ 1, ..., T}. If wt

i = 0 the precedence constraint∑t
l=1 w

l
j − wt

i =
∑t

l=1 w
l
j ≥ 0 is trivially satisfied ∀(i, j) ∈ A.

Now, let wt
i = 1. By definition of w, we have yti = 1 and xi = 1 and let us consider j such that que (i, j) ∈ A.

Given that y is feasible point for (CDOP ), there exists l ∈ {1, ..., t} such that ylj = 1.



17-29
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∑
i∈Px̄
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Proposition 11 Let ȳ be any solution of (CDOP) and x̄ be the solution whit maximal cardinality of (FOP). Then
∑

i∈Qȳ\Px̄

bi = 0 =⇒ Qȳ ⊆ Px̄

Proof. From Proposition 10 there exist z̄ such thatQȳ = Pz̄ and from Proposition 5, Pz̄ ∪Px̄ contains a feasible point
for (FOP ). Furthermore ∑

i∈Pz̄∪Px̄

bi =
∑
i∈Px̄

bi +
∑

i∈Pz̄\Px̄

bi =
∑
i∈Px̄

bi,

then the vector determining Pz̄∪Px̄ is a solution of (FOP ). From Proposition 8 we have Pz̄∪Px̄ ⊆ Px̄ which implies
Pz̄ ⊆ Px̄.

Later, we are going to prove this last preposition is necessary so the conjecture is right.

Proposition 12 Let y be a feasible point of (CDOP ), x a feasible point of (FOP ) and t̄ ∈ {1, . . . , T − 1}. Then
there exists w, feasible point for (CDOP ) such that

(i) Qt
w = Qt

y for t ∈ {1, ..., t̄} , t̄ ≥ 1

(ii) Qt
w = Qt

y ∩ Px for t ∈ {t̄+ 1, ...T}

And when t̄ = 0 there exist w feasible point for (CDOP) such that

Qt
w = Qt

y ∩ Px for t ∈ {1, ...T}

Proof. For t̄ ≥ 1 let us define w by

wt
i =




yti si t ∈ {1, ..., t̄} , i ∈ N

1 si (yti = 1 ∧ xi = 1), t ∈ {t̄+ 1, ..., T} , i ∈ N

0 si (yti = 0 ∨ xi = 0), t ∈ {t̄+ 1, ..., T} , i ∈ N

Then it is clear that
Qt

w = Qt
y for t ∈ {1, ..., t̄} , t̄ ≥ 1

Qt
w = Qt

y ∩ Px for t ∈ {t̄+ 1, ...T} ,
We will prove that this w is a feasible point for (CDOP ). Note that by how we define w, wi ∈ {0, 1} and this can be
written as wt

i = ytixi for t ∈ {t̄+ 1, ...T}, which implies that wt
i ≤ yti ∀t ∈ {1, ..., T}, then

T∑
t=1

wt
i ≤

T∑
t=1

yti ≤ 1 ∀i ∈ N

∑
i∈N

piw
t
i ≤

∑
i∈N

piy
t
i ≤ Ct ∀t ∈ {1, ...T}

This prove (6),(7) and (9). For the precedence constraints we have that y = w when t ∈ {1, ..., t̄}, then the constraint
is trivially satisfied. The interesting case to analyze is t ∈ {t̄+ 1, ..., T}. If wt

i = 0 the precedence constraint∑t
l=1 w

l
j − wt

i =
∑t

l=1 w
l
j ≥ 0 is trivially satisfied ∀(i, j) ∈ A.

Now, let wt
i = 1. By definition of w, we have yti = 1 and xi = 1 and let us consider j such that que (i, j) ∈ A.

Given that y is feasible point for (CDOP ), there exists l ∈ {1, ..., t} such that ylj = 1.
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• If l ≤ t̄ then ylj = wl
j = 1 which proves the condition.

• If l > t̄we have ylj = 1 and x being a feasible point for (FOP ), we have xj = 1, thenwl
j = 1, and the constraint

is satisfied.

When t̄ = 0, we have that wt
i = ytixi, , t ∈ {t̄+ 1, ..., T} , ∀i ∈ N . The verification of w satisfies (6), (7), (8), (9)

can be made by using similar arguments.

Theorem 13 Fundamental Theorem. Let x̄ the solution of (FOP ) such that the set Px̄ has maximal cardinality
among all solutions of (FOP ), and let y be any solution of (CDOP ). Then

Qy ⊆ Px̄

Proof. We are going to prove the hypothesis of Proposition 11. For this, we will prove
∑

i∈Qy\Px̄
bi = 0.

From Propositions 5 and 10, we have that Px̄ ∪Qy is a feasible solution of (FOP ), then
∑

i∈Px̄∪Qy

bi =
∑
i∈Px̄

bi +
∑

i∈Qy\Px̄

bi ≤
∑
i∈Px̄

bi

So, we have
∑

i∈Qy\Px̄
bi ≤ 0

Concerning the other inequality we prove the next result: ∀t̄ ∈ {0, ..., T − 1}

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi ≥
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≥ 0

This will be proven by reverse induction, starting from T − 1.
Base case: t̄ = T − 1.
From Proposition 12, there exists a vector w, feasible for (CDOP ) such that:

Qt
w = Qt

y for t ∈ {1, ..., T − 1}

Qt
w = Qt

y ∩ Px for t = T

From optimality of y we have:

T∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

=

T−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+
∑

i∈QT
y ∩Px

bi
(1 + α)T−1

+
∑

i∈QT
y \Px

bi
(1 + α)T−1

≥
T∑

t=1

∑
i∈Qt

w

bi
(1 + α)t−1

=

T−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+
∑

i∈QT
y ∩Px

bi
(1 + α)T−1

Then, ∑
i∈QT

y \Px

bi
(1 + α)T−1

≥ 0

Due to (1 + α)T−1 ≥ 0, so ∑
i∈QT

y \Px

bi ≥ 0

Furthermore,
T∑

t=T

∑
i∈Qt

y\Px

bi =

T∑
t=T

∑
i∈Qt

y\Px

bi
(1 + α)t−T

which verifies the base case.
Induction: Let us suppose true for 0 < t̄ < T − 1. We will prove for t̄− 1, t ≥ 2.
From Proposition 12 there exists a feasible point w such that

Qt
w = Qt

y for t ∈ {1, ..., t̄− 1}

Qt
w = Qt

y ∩ Px for t ∈ {t̄, ...T}

By using the optimality of y we have

T∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

=
t̄−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥
T∑

t=1

∑
i∈Qt

w

bi
(1 + α)t−1

=
t̄−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

Then, we have:
T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥ 0

Given that (1 + α)t̄−1 ≥ 0, multiplying this expression we obtain

T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

≥ 0

For the second inequality we note:

0 ≤
T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

=
∑

i∈Qt̄
y\Px

bi +

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

=
∑

i∈Qt̄
y\Px

bi +
1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

By using the first inequality of the induction hypothesis

0 ≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

and, from 1
(1+α) ≤ 1, we obtain:

1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

By using the second inequality of the induction hypothesis

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
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• If l ≤ t̄ then ylj = wl
j = 1 which proves the condition.

• If l > t̄we have ylj = 1 and x being a feasible point for (FOP ), we have xj = 1, thenwl
j = 1, and the constraint

is satisfied.

When t̄ = 0, we have that wt
i = ytixi, , t ∈ {t̄+ 1, ..., T} , ∀i ∈ N . The verification of w satisfies (6), (7), (8), (9)

can be made by using similar arguments.

Theorem 13 Fundamental Theorem. Let x̄ the solution of (FOP ) such that the set Px̄ has maximal cardinality
among all solutions of (FOP ), and let y be any solution of (CDOP ). Then

Qy ⊆ Px̄

Proof. We are going to prove the hypothesis of Proposition 11. For this, we will prove
∑

i∈Qy\Px̄
bi = 0.

From Propositions 5 and 10, we have that Px̄ ∪Qy is a feasible solution of (FOP ), then
∑

i∈Px̄∪Qy

bi =
∑
i∈Px̄

bi +
∑

i∈Qy\Px̄

bi ≤
∑
i∈Px̄

bi

So, we have
∑

i∈Qy\Px̄
bi ≤ 0

Concerning the other inequality we prove the next result: ∀t̄ ∈ {0, ..., T − 1}

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi ≥
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≥ 0

This will be proven by reverse induction, starting from T − 1.
Base case: t̄ = T − 1.
From Proposition 12, there exists a vector w, feasible for (CDOP ) such that:

Qt
w = Qt

y for t ∈ {1, ..., T − 1}

Qt
w = Qt

y ∩ Px for t = T

From optimality of y we have:

T∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

=

T−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+
∑

i∈QT
y ∩Px

bi
(1 + α)T−1

+
∑

i∈QT
y \Px

bi
(1 + α)T−1

≥
T∑

t=1

∑
i∈Qt

w

bi
(1 + α)t−1

=

T−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+
∑

i∈QT
y ∩Px

bi
(1 + α)T−1

Then, ∑
i∈QT

y \Px

bi
(1 + α)T−1

≥ 0

Due to (1 + α)T−1 ≥ 0, so ∑
i∈QT

y \Px

bi ≥ 0

Furthermore,
T∑

t=T

∑
i∈Qt

y\Px

bi =

T∑
t=T

∑
i∈Qt

y\Px

bi
(1 + α)t−T

which verifies the base case.
Induction: Let us suppose true for 0 < t̄ < T − 1. We will prove for t̄− 1, t ≥ 2.
From Proposition 12 there exists a feasible point w such that

Qt
w = Qt

y for t ∈ {1, ..., t̄− 1}

Qt
w = Qt

y ∩ Px for t ∈ {t̄, ...T}

By using the optimality of y we have

T∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

=
t̄−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥
T∑

t=1

∑
i∈Qt

w

bi
(1 + α)t−1

=
t̄−1∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

+

T∑
t=t̄

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

Then, we have:
T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥ 0

Given that (1 + α)t̄−1 ≥ 0, multiplying this expression we obtain

T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

≥ 0

For the second inequality we note:

0 ≤
T∑
t=t̄

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

=
∑

i∈Qt̄
y\Px

bi +

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−t̄

=
∑

i∈Qt̄
y\Px

bi +
1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

By using the first inequality of the induction hypothesis

0 ≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

and, from 1
(1+α) ≤ 1, we obtain:

1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

By using the second inequality of the induction hypothesis

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi
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Combining the two expressions, we obtain

1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
T∑

t=t̄+1

∑
i∈Qt

y\Px

bi

Then,

0 ≤
∑

i∈Qt̄
y\Px

bi +
1

(1 + α)

T∑
t=t̄+1

∑
i∈Qt

y\Px

bi
(1 + α)t−(t̄+1)

≤
∑

i∈Qt̄
y\Px

bi +

T∑
t=t̄+1

∑
i∈Qt

y\Px

Now, for t̄ = 1, using prop. 12 in the case 0, there exist w such that: Qt
w = Qt

y ∩ Px para t ∈ {1, ...T}
Developing the expression

T∑
t=1

∑
i∈Qt

y

bi
(1 + α)t−1

=

T∑
t=1

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

+

T∑
t=1

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥
T∑

t=1

∑
i∈Qt

w

bi
(1 + α)t−1

=

T∑
t=1

∑
i∈Qt

y∩Px

bi
(1 + α)t−1

Then we have
T∑

t=1

∑
i∈Qt

y\Px

bi
(1 + α)t−1

≥ 0

The proof for the other inequality is similar to the previous proof, so in this case we have that:

0 ≤
T∑

t=1

∑
i∈Qt

y\Px

bi =
∑

i∈Qy\Px

bi

Finally, Proposition 11 implies Qy ⊆ Px̄

In [4] CDOP is formulated differently but equivalent to the presented in this paper so the Fundamental Theorem
also is right in this case.

Conclusions
The Fundamental Theorem is a very known property, but its demonstration is less known. From now on, this paper

is a good source to see its proof. The importance of this theorem is that it lets us reduce the quantity of variables and
restriction of the CDOP problem, solving first the FOP problem, which is faster and whose solution contains the CDOP
solution.
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In this article we propose further properties of the optimal profile for the open pit problem, in the
continuous framework, that is to say the case in which the problem is written in terms of a functional
space. In particular, we prove that the benefit along the border of the optimal pit is zero, unless the
slope or capacity restrictions are active.

Introduction
In this work we address three problems: the final open pit problem (FOP) in which the optimal profile must only satisfy
the slope condition; the capacitated final open pit (CFOP), in which we add a capacity condition, imposing that the
total mass to be extracted is limited by a given upper bound; and the capacitated dynamic open pit problem (CDOP),
in which a nested sequence of capacitated profiles is determined along the periods. In the two first cases, the criteria is
maximizing the total benefit, but in the third case the criteria is given by the discounted value for the planning horizon.
We essentially prove that the value distribution along the lower border of the optimal pit must be zero or negative, when
the slope or capacity constraint are not actives. This result comes from the tools provided by the calculus of variations
and optimal control. Some relevant references on open pit models are [1], [2], [3], [4].

Preliminaries
Let Ω be the region of interest in R2 or R3, supposed to be open and bounded, and Ω its closure. Each pit will be
defined by a (profile) function p : Ω → R, where p(x) represents the depth of the pit at the point x ∈ Ω. We suppose
that these profiles belong to the Banach space of real continuous functions C(Ω), under the supreme norm. We say that
a profile q is deeper than p if p(x) ≤ q(x) ∀x ∈ Ω. We also consider an initial (feasible) profile p0 ∈ C(Ω) and the
two regularity conditions

p(x)− p0(x) ≥ 0, ∀x ∈ Ω

p(x)− p0(x) = 0, ∀x ∈ ∂Ω

Note that we also consider that for z := inf
{
p0(x)|x ∈ Ω

}
and a given z, we have p(x) ∈ Z = [z, z], ∀x ∈ Ω. To

include the slope condition we use Lp(x) ≤ w(x, p(x)), ∀x ∈ Ω, where

Lp(x) := lim sup
x̄→x←x̂

|p(x̄)− p(x̂)|
||x̄− x̂||

∀x ∈ Ω

and w : Ω× Z → [0,∞) is a given function.
We define the effort and the gain functions: e(x, z) ≥ eo > 0, g(x, z) ∈ R, ∀(x, z) ∈ Ω × Z, supposed uniformly
bounded, and

G[p, q] :=

∫

Ω

∫ q(x)

p(x)

g(x, z)dzdx, E[p, q] :=

∫

Ω

∫ q(x)

p(x)

e(x, z)dzdx

G[q] := G[p0, q] E[q] := E[p0, q]

Then we write the problem

(FOP ) maxG[p]

p(x)− p0(x) ≥ 0, ∀x ∈ Ω (1)
p(x)− p0(x) = 0, ∀x ∈ ∂Ω (2)

Lp(x) ≤ w(x, p(x)) ∀x ∈ Ω (3)
p ∈ C(Ω) (4)
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Using a massive data base from a mined out area on a gold mine,  indirect and direct localized 
conditioning  of  recoverable resource techniques have been analyzed using typical feasibility 
study or new mine drilling data configurations that were drawn from this data base. The results 
were then compared with the historical corresponding grade control and production data in order 
to determine the efficiencies of the approaches and the validity of the recoverable mineral resource 
estimates for mine planning and financial forecasts.  
 
The study shows that the localized and somewhat more straight forward approach if applied 
efficiently can provide an equally useful tool for computing recoverable resources for feasibility 
mine planning as compared to the indirect approach as presently in use. 

 
Introduction 
For new mining projects or for medium to long-term areas of existing mines, drilling data are invariably on a 
relatively large grid. Direct estimates for Selective Mining Units (SMU’s) and also of much larger block units will 
then be smoothed due to the information effect and the high error variance.   
 
The difficulty is that ultimately, during mining, selection will be done on the basis of selective mining units on the 
final closer spaced data grid, which is then available, i.e. the actual selection will be more efficient with fewer 
misclassifications.  However, this ultimate position is unknown at the project feasibility stage and therefore has to be 
estimated. This is because any cash flow calculations made on the basis of the smoothed estimates will naturally 
misrepresent the economic value of the project, i.e.  the average grade above cut-off will be underestimated and the 
tonnage overestimated for cut-offs below the average grade of the ore body.  Similarly, unsmoothed estimates will 
be inefficient and will give even worse results, particularly in local areas of short term planning or mining. 
 
The paper investigates the relative efficiencies of different parametric techniques for computing recoverable 
resource estimates, which are usually required for feasibility mine planning.  Indirect and direct localized 
conditioning distributions of selective mining units are used.  
 
The general indirect approach to the problem above is to derive the unknown SMU distribution from the observed 
distribution of relative large blocks. The general indirect approach to the problem above is to derive the unknown 
SMU distribution from the observed distribution of relatively large kriged blocks (panels).  The alternatives for the 
indirect approach as used in previous publications are the uniform conditioning [1,2], Multivariate Uniform 
Conditioning [3] and the assumed lognormal distribution of SMU’s within large planning blocks (“INDLN” ).[4,5]  
These techniques are indirect in the sense that the SMU distributions are inferred indirectly from initial estimated 
large kriged blocks/panels. 
 
In order to provide the recoverable resource estimates for the ore body, the INDLN as proposed by Assibey-Bonsu 
and Krige [4] and the Localized Conditioning technique (LCT), as proposed by Abzalov [6], were utilized.  Abzalov 
proposed using the grade-tonnage functions from the large panel indirect estimates (derived from indirect approach) 
and then decomposing the panel-specific grade-tonnage data into a suite of individual SMU-sized units within 
respective panels. Abzalov suggested that the individual parcel grades of the SMU derived from the decomposed 
LCT approach be assigned to the SMU size blocks within the respective panels.  
 
Using a massive data base from a mined out area on a gold mine,  indirect (INDLN)  and direct localized (LCT)  
conditioning  of  recoverable resource techniques have been analyzed using typical feasibility study or new mine 




