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In open pit mine planning, there are three well known models concerning how to find a region of
maximal economic value under geotechnical stability constraints. These models belong to the area
of integer programming and we respectively call them as Final Open Pit (FOP), Capacitated Open Pit
(COP) and Capacitated Dynamic Open Pit (CDOP). In this work we formalize some ideas about these
models and their connecting properties and, as a main result, we prove the well known conjecture
that a pit which is solution of (CDOP) is contained in the biggest pit from the solution of (FOP).

Introduction

Three models are usually considered in this area, such as is pointed out in [1], [2] and [3]. We will describe the main
properties of this models aiming to provide a new proof of the well known fact that the sequenced open pit is contained
in the final open pit. The case with ore blending constraints or lower bounds in the capacity are not considered in
this work and certainly our main result could change in those cases. To formalize this approach, we first recall the
mathematical definitions of those problems.

Let us suppose that we have a set of blocks A" which the benefit is known, then for every i € N we call b; that value,
and define the variables:

xT; =

1 if block 1 is chosen for extraction
0 if not

We also consider a set of arcs A representing the precedences between the bloks. The optimization model can be
expressed by

(FOP) max Z biz;

iEN
2, €{0,1} Vie N )

If we consider a maximal capacity C' of extraction in terms of total mass, the model can be modified as

(CFOP) max Z biz;

i€EN
> piwi<C ©)
iEN
z; €{0,1} Vie N (5)

p; being the density of the block. In this case, if the total capacity is expressed in terms of number of blocks, then we
simply use p; = 1, for all i € N and C is an integer number.
For the dynamic problem, we define the variables:

x; =

. J1 (ifblock i isextracted at time t
0 ifnot

In this case, we consider discrete time ¢t = 1,...,7 and a constant o €]0, 1] representing the discount factor. We also
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know the capacity at every period, denoted as C;. The dynamic model can be written as:

T
b;
T

t=14eN
dal<1lVieN (6)
t=1
t
doab—al>0 Vi@, eA t=1,.,T (7
=1
Y opiat<Crt=1..T ®)
iEN
2t e{0,1} Vie Njt=1,...,T )

In [3] the constraint (8) has a lower bound, which in this case is 0.

Definition 1 For every feasible point x we will denote P, = {i € N | z; = 1} the pit associated to x. If © is a solution
of (FOP), we call P, a final (optimal) pit.

Definition 2 For every y, feasible point of (C DOP), we denote Q, = {i € N'|3t € {1, ..., T} yt = 1} the associ-
ated pit to y and Q!, = {i € N|y} = 1} is known as a phase. Obviously,

T
t=1

The solution of (FOP) is in general not unique, but we consider the solution having maximal cardinality. See, as
example, the case:

-5 10 10 10 -5 -5 10 10 10 -5
0 -5 10 -5 0 0 -5 10 -5 0
0 0 20 0 0 0 0 20 0 0
0 0 0 0 0 0 0 0 0 0

Figure 1: Two solutions of the same (FOP) problem

The right pit has the same value as the left pit, however the latter contains more blocks. The conjecture is:

Conjecture 3 Let T be the solution of (FOP) such that | Py is maximal among all optimal solutions of (FOP) and let
y be any optimal solution of (CDOP), then:

Later, we will prove that P; contains all the pits having maximal value. Moreover, it is clear that if a final pit contains
all the pits having maximal value then has maximal cardinality, so our conjecture can be presented as follows.

Conjecture 4 Let T a solution of (FOP) such that, every optimal solution is contained in Py, and let y be any optimal
solution of (CDOP), then:
Q, C P

Both conjectures are equivalent so we talk about the conjecture. The existence of this optimal pit having maximal
cardinality comes from the fact that the feasible set is finite and nonempty (the trivial solution is always feasible).
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Preliminary results
Firstly, we show some preliminary results to prove the conjecture.

Proposition 5 If ! and x? are feasible points of (FOP) then there exists a feasible point z such that:
PaUP;: =P,
Proof: It is clear that
PoUP:={ieNz;j=1}U{ieNz} =1} ={i e N|z; =1V} =1}
Then, we have to prove that there exists a feasible point z such that:

{ieNzf =1val=1}={ie N|z =1}

By defining the binary variable 2 such that z; = 1 <= z} = 1V 2? = 1 we clearly have the equality of the sets. To

=
verify (1), we analyze two cases
a) z; = 0. In this case z; — z; = z; > 0V(4, j) € A and the constraint is satisfied.

b) z; = 1. By definition of z, this means that Lll =1V 172 = 1. Given that these two vectors are feasible, from the
precedence relations we have:
zy=1Va; =1V(i,j) € A

This implies z; = 1V(4,7) € A, then z; — z; > 0V(4,5) € A. [ |

Proposition 6 [fx! and x? are feasible for (FOP) then there exists z, feasible point for (FOP), such that:
PaNPe=P,
Proof. Following the same ideas of the previous proposition, we have

PaNPga={i€Nl|z}]=1Az} =1}

Then, if we define the binary variable z such that z; = 1 <= 2} = 1 Az = 1 we have the equality of the two sets.

1=
The relevant case to prove (1) is z; = 1, because if z; = 0 the constraint is trivially satisfied.
The expression z; = 1 implies 2} = 1 and 22 = 1, then given that z' and z? are feasible for (FOP), we have

xh =3 =1Y(i,5) € A.

So z; = 1V(i,j) € A, then z satisfies P, N P,z = P, and is feasible for (FOP). |

Remark 7 From now, given a feasible point x for (FOP), we will use the following expression for the objective
function:

She- ¥ n-Yon

i€EN i€EN:x;=1 i€ P,

Proposition 8 [fx is any solution of (FOP), and T a solution of (FOP) which | Pz| is the biggest among all solutions
of (FOP) then P, C Pz

Proof. From Proposition 5, P, U P; is well defined in a feasible point of (FOP), then

ZbiZ Z bi:Zbi"‘ Z b; (10)

ieP; i€P,UP; ieP; i€P,\ Py
The first inequality comes from the optimality of Z and the equality comes from the fact that P; and P, \ P; is a
partition of P, U Pz. Then we have:

Y bi<o (i

i€ P, \ Pz
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Similarly,

Zbi: Z b; + Z b; < Z b; +0

iEP, i€P.NPs i€P,\P; i€P.NPs

Now, as x and Z are feasible points for (FOP), from Proposition 6 there exists a feasible point for (FOP) such that
the associated final pit is P,, N Py, then the last inequality must be an equality (because z is optimal for (FOP)). Then

> bi=0

1€P,\ Pz
By replacing in (10) we have

S -y

i€P;UP; i€ Pz

Then, from the existence of z, feasible for (FOP) such that P, U P; = P,, then it is also an optimum.
From the definition of Z as the solution of (FOP) such that P; has maximal cardinality then

|P. U Pz| < |Pg|
But P; C P, U Py, then the equality holds. So
|Pe| + |Pe \ Px| = [Py U Px| = [Px| == [Pp\ Pz[ =0

which means P, \ P; = 0 and P, C P;. u

Corollary 9 There is only one solution of (FOP) whose associated pit has the biggest cardinal among all the solutions
of (FOP)

Proof. The existence is because of the feasibility of the problem. Let z' and x? be two optimum points of (FOP)
whose associated pit has the biggest cardinal. Because of preposition 2.3 we have that

P, C P2 APy C P
2

So P,1 = P,» concluding that ! = 22,

Main results
In the sequel, we refer to the unique solution of (FOP) having biggest cardinal among all the solutions of (FOP).

Proposition 10 Given a feasible point y for (C DOP), there exists z, feasible point for (FOP), such that
Qy = Pz

Proof. Let y = {y!} be a feasible point of (CDOP). We define

T

t

Zi = E Yi
t=1

We will prove that z is feasible for (FOP) and it fulfill the equality of the corresponding sets of blocks. Firstly, from
feasibility of y it is obvious that z; € {0, 1}, because of (6) and (9).

To prove z; — z; > 0 V(4,5) € A we only consider the case z; = 1, the other one being trivial. It is clear that there
exists a unique ¢t = 1,...,T such that yf = 1. From (7) we have, for all (i,5) € A

i T
DB ED W
=1 =1

which means that z; = 1 V(4, j) € A and then z is feasible for (FOP).

STowy

1=y
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Furthermore, it is easy to see that

T
zi=1 < nyzl — Ftell,...Tyy=1
t=1
where the last equivalence is due to feasibility of y for (CDOP). This implies @, = P.. |

We prove below some new properties of the optimal pits.

Proposition 11 Let § be any solution of (CDOP) and T be the solution whit maximal cardinality of (FOP). Then
> bi=0= Q;CP
1€Qy\ Px
Proof. From Proposition 10 there exist z such that Q5 = P; and from Proposition 5, P; U Pz contains a feasible point
for (FOP). Furthermore
)IUED SRS ST
1€PsUP; i€P;5 i€P:\ Py i€ Px
then the vector determining Pz U P; is a solution of (FOP). From Proposition 8 we have P; U P; C P; which implies
P; C P;. |
Later, we are going to prove this last preposition is necessary so the conjecture is right.

Proposition 12 Let y be a feasible point of (CDOP), x a feasible point of (FOP) andt € {1,...,T — 1}. Then
there exists w, feasible point for (C DOP) such that

) QL =Qi forte{l,.,t}, t>1
(i) Qt, = QZ NP, forte{t+1,..T}
And when t = 0 there exist w feasible point for (CDOP) such that
w=QyNP, forte{l,.T}
Proof. For ¢ > 1 let us define w by
yl site{l,.,t}, i €N

wi=<1 si(yb=1Aa2;=1),te{f+1,.,T}, i€N
0 si(yi=0vVa;=0), te{t+1,.,T},i€N

Then it is clear that
QL =Q) forte{l,..i}, I>1
QL =Q, NP, forte{t+1,..T},

We will prove that this w is a feasible point for (C DOP). Note that by how we define w, w; € {0, 1} and this can be
written as w! = yfz; fort € {t + 1,...T'}, which implies that w! < y{ V¢ € {1, ..., T}, then

T T
ZwﬁﬁnySlVieN
t=1 t=1

Zpiwf < Zpiyf <Cyvte{l1,.T}

ieEN ieN
This prove (6),(7) and (9). For the precedence constraints we have that y = w when t € {1, ..., t}, then the constraint
is trivially satisfied. The interesting case to analyze is t € {¢t+1,...,T}. If w! = 0 the precedence constraint
S, wh —wh = S, wh > 0 is trivially satisfied V(i, j) € A.
Now, let w! = 1. By definition of w, we have y! = 1 and =; = 1 and let us consider j such that que (4, j) € A.
Given that y is feasible point for (C DOP), there exists [ € {1, ...,t} such that yé- =1
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* If 1 < then y! = w’ = 1 which proves the condition.

« If] > t we have y; = 1 and z being a feasible point for (FOP), we have z; = 1, then wé- = 1, and the constraint
is satisfied.

When £ = 0, we have that w! = yiz;, ,t € {t+1,...,T}, Vi € N. The verification of w satisfies (6), (7), (8), (9)
can be made by using similar arguments. |

Theorem 13 Fundamental Theorem. Let T the solution of (FOP) such that the set Py has maximal cardinality
among all solutions of (FOP), and let y be any solution of (CDOP). Then

Qy < Ps

Proof. We are going to prove the hypothesis of Proposition 11. For this, we will prove Zier\ p, bi =0.
From Propositions 5 and 10, we have that P; U @), is a feasible solution of (FOP), then

Z bizzme Z b; < Zbi
1€P;UQy i€ Pz 1€Qy\ Pz i€ P;

So, we have ZiEQy\P@ b; <0
Concerning the other inequality we prove the next result: V¢ € {0,...,7 — 1}

Z Zb>z ZW—O

t=t+14i€Q!\ Py t=t+14i€Q\Py

This will be proven by reverse induction, starting from 7" — 1.
Basecase:t =T — 1.
From Proposition 12, there exists a vector w, feasible for (C'DOP) such that:

w=Qy forte{l,...,T -1}

QZzQZﬂowm't:T

From optimality of y we have:

a b, = b, b, b;

1 1 T 1
D Areori = X gramit X grart X grar
t=11ieQ}, (1+a) t=1i€Q} (1+a) 1€EQT NPy (1+a) 1€QY \ Py (1+a)

Then,

Dueto (1 +a)T~1 >0,s0

> b0

1€QT\ P,

Furthermore,

ZZb—ZZ

t=T i€Qt\ P, t=Ti€Qt\ P,
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which verifies the base case.

Induction: Let us suppose true for 0 < ¢ < T — 1. We will prove fort — 1, ¢ > 2.

From Proposition 12 there exists a feasible point w such that

-1}

}

1+a

1+a

Ql, = Q! fort € {1,...,
Ql,=Q! NP, forte{t,.T
By using the optimality of y we have
T t—1
ZZHQ) =2 1+a 53DY
t=1ieQ", t=1 zeQ; t=t i€Q NPy
T
b
S
) (1+a)t=
t—1
= a Mf Y Y
t=1ie L t=t i€Q! NP,
Then, we have:
DD DERIRUBEE

t=t i€Ql\Py

L > 0, multiplying this expression we obtain

2275

t=t i€Q!\ Py

Given that (1 + a)%

For the second inequality we note:

0<Z >

t=t i€Q!\ Py

= 2 b+2

(1+ a) QP

>

t=t+14i€Q\ Py

Zb+1+az Z

1€Q‘ \ Py
By using the first inequality of the induction hypothesis
t=t+1i€Q,\ Py

< 1, we obtain:

and, from (1+ 5 <

ZZW

t T+1i€Ql\ Py

By using the second inequality of the induction hypothesis

> ¥

t—(t+1)
t=t+1i€QL\Py 1+0[
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t=t+14€QL\ Py

(1 +a Yi=(E+1)

ZZ

t=t+14€Q}\ Py

Y Yo

t=t+1i€Q\ Py

Y

1+ o)1
t=t i€Ql\Py 1+a)

1+af G

) t=(+1)



Combining the two expressions, we obtain

ZZﬁZZb

t t+1i€Qt\ Py t=t+14i€Q\ Py

Then,
T
D DY e =co EAD VLD DD
i€Ql\ Py t t+1i€Ql\ Py 1€QL\ Py t=t+1i€Q!\ Py

Now, for £ = 1, using prop. 12 in the case 0, there exist w such that: Qf, = QZ NP, parate{1,..T}
Developing the expression

DD DESLEEES i) DR NEED D) DR

t= 1zth t=1ieQtNP, t=14eQL\P,

b;
(14 a)t-t

(A%

i€Ql,

)DL -
t—1
Ticorop, (11 9)

] = HM’%

~
Il

Then we have
T
> 3 ez
=1 7€Qt \ Pz + a)

The proof for the other inequality is similar to the previous proof, so in this case we have that:

ong: Sobi= > b

t=1icQ!\P, i€Qy\ Py
Finally, Proposition 11 implies @, C Ps |

In [4] CDOP is formulated differently but equivalent to the presented in this paper so the Fundamental Theorem
also is right in this case.

Conclusions

The Fundamental Theorem is a very known property, but its demonstration is less known. From now on, this paper
is a good source to see its proof. The importance of this theorem is that it lets us reduce the quantity of variables and
restriction of the CDOP problem, solving first the FOP problem, which is faster and whose solution contains the CDOP
solution.
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